You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Additive Manufacturing for Naval Aviation Battery Applications

    SBC: TEXAS RESEARCH INSTITUTE , AUSTIN, INC.            Topic: N18AT008

    Texas Research Austin (TRI-Austin) will continue to partner with the University of Texas, Austin, to use additive manufacturing for fabricating and optimizing the lithium ion and electroactive metal electrode systems for which the team established proof of concept in the Phase I base period. The Aerosol Deposition Method (ADM) is a broadly applicable additive manufacturing technology that has been ...

    STTR Phase II 2019 Department of DefenseNavy
  2. Innovations in Designing Damage Tolerant Rotorcraft Components by Interface Tailoring

    SBC: HARP ENGINEERING LLC            Topic: N19AT003

    The performance of a composite material is heavily influenced by the strength and toughness of the interlaminar region, which is the resin rich area between the plies of a fiber reinforced composite.  The interlaminar region generally provides a direct path for crack propagation since no continuous reinforcement is present and is often the cause of failure in materials subjected to cyclic loadin ...

    STTR Phase II 2020 Department of DefenseNavy
  3. Additive Manufacturing for Naval Aviation Battery Applications

    SBC: STORAGENERGY TECHNOLOGIES INC            Topic: N18AT008

    The objective of the efforts being proposed is to develop high energy density and power density batteries with long cycle life by high-speed additive manufacturing technologies.

    STTR Phase II 2019 Department of DefenseNavy
  4. Cognitive Adaptation and Mission Optimization (CAMO) for Autonomous Teams of UAS Platforms

    SBC: OPTO-KNOWLEDGE SYSTEMS INC            Topic: N17BT035

    The Navy needs cognitive control capabilities that enable an autonomous robotic team comprised of a ground control station node and a team of UAS platforms to operate independently (or with minimal human oversight) while carrying out complex missions. A cognitive control capability needs to be developed that concurrently optimizes the balance of mission risk / performance with respect to the Navy ...

    STTR Phase II 2019 Department of DefenseNavy
  5. Integrated learning-based and regularization-based super resolution for extreme MWIR image enhancement

    SBC: OPTO-KNOWLEDGE SYSTEMS INC            Topic: N17AT016

    OKSI and Northwestern University propose to develop a single-image super-resolution (SR) methodology for mid-wave infrared (MWIR) imagery that combines learning-based and regularization-based approaches to produce extreme enhancement of low-resolution images. We will also develop a detector-limited imaging system specifically designed to be used with the SR methodology for which even higher levels ...

    STTR Phase II 2019 Department of DefenseNavy
  6. Soliloquy Ph II

    SBC: SOAR TECHNOLOGY, LLC            Topic: N17AT010

    Automatic Speech Recognition (ASR) allows trainees to practice verbal communication skills in representative training environments without the need for human role players. However, these technologies have yet to become a feature of most training systems. Building on Phase I work, SoarTech along with our academic partners at UC Davis, proposes developing Soliloquy, a novel interface that allows non ...

    STTR Phase II 2019 Department of DefenseNavy
  7. Algorithms for Look-down Infrared Target Exploitation

    SBC: SIGNATURE RESEARCH, INC.            Topic: NGA18A001

    The multidisciplinary area of GEOINT is changing and becoming more complex. A major driver of innovation in GEOINT collection and processing is artificial intelligence (AI). AI is being leveraged to help accomplish spatial analysis, change detection, and image or video triage tasks where filtering objects of interest from large volumes of data is critical. NGA is confronting the changing GEOINT l ...

    STTR Phase II 2020 Department of DefenseNational Geospatial-Intelligence Agency
  8. Non-Destructive Evaluation (NDE) of Missile Launcher Ablatives

    SBC: TEXAS RESEARCH INSTITUTE , AUSTIN, INC.            Topic: N18AT011

    MK-41 VLS exhaust paths are lined with ablative insulation that chars and ablates with each missile firing. There is no way to inspect, in-situ, chemical and physical changes to the ablatives. Such measurements are complicated because ablative materials: vary with location, are low density, and degrade non-linearly with firings.Failure of VLS insulation is not an option – but the usage life of t ...

    STTR Phase II 2020 Department of DefenseNavy
  9. Optimization of Fatigue Test Signal Compression Using The Wavelet Transform

    SBC: ATA ENGINEERING, INC.            Topic: N18BT029

    ATA Engineering has developed a wavelet-based damage squeezing methodology for generating optimally compressed fatigue test signals that produce an equivalent amount of fatigue damage in a predictably reduced amount of time compared to the baseline (uncompressed) signals. Fatigue-critical signal characteristics (e.g., magnitude, phase, frequency, and sequencing relationships) are identified in the ...

    STTR Phase II 2020 Department of DefenseNavy
  10. Detect and Avoid Certification Environment for Unmanned Air Vehicles (UAVs)

    SBC: RDRTEC INCORPORATED            Topic: N18AT007

    The objective of this project is to develop a comprehensive suite of tools, called the DAA Radar Software Suite and Simulation (DAA-RSSS), that supports future Navy procurement and certification of non-cooperative sensor technologies for Detect And Avoid (DAA) as well as develop plans to support EO/IR sensors as the non-cooperative sensor as informed by FAA activities in developing Minimum Operati ...

    STTR Phase II 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government