You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Quantum Cascade Laser Array with Integrated Wavelength Beam Combining

    SBC: PENDAR TECHNOLOGIES LLC            Topic: N19AT005

    Pendar Technologies proposes to develop the next generation of compact, high power quantum cascade laser (QCL) sources with output power exceeding 10 Watts at a wavelength of 4.6 microns. The proposed subsystem will include a DFB QCL array integrated monolithically with power amplifiers, low-loss passive waveguides resulting from ion implantation and optical elements aimed at realizing on-chip wav ...

    STTR Phase I 2019 Department of DefenseNavy
  2. Multi Scale Multi Fidelity Carbon-Carbon Manufacturing Process Modeling with Data Fusion

    SBC: CFD RESEARCH CORPORATION            Topic: AF19AT021

    The proposed effort aims to deliver a novel process model for carbon-carbon manufacturing to determine thermo-mechanical properties of these materials and their components, thereby enabling a faster cycle for material development for hypersonic platforms. The proposed solution consists of (1) requirement and functionality analyses, (2) a six-level model representing the key steps of the manufactur ...

    STTR Phase I 2019 Department of DefenseAir Force
  3. 3-Band Picosecond High Energy Compact Laser System

    SBC: Q-PEAK, INCORPORATED            Topic: N19AT009

    The Navy seeks technology that is oriented toward a deeper experimental and theoretical understanding of marine turbulence and laser light propagation in the marine boundary. Current measurement techniques, such as Doppler Velocimetry (LDV) technique, are limited to resolutions of 0.5 meters or greater and fall short of the required millimeter level resolution. A new type of spectral imaging modal ...

    STTR Phase I 2019 Department of DefenseNavy
  4. Vibration imaging for the characterization of extended, non-cooperative targets

    SBC: Guidestar Optical Systems, Inc.            Topic: AF19AT006

    Locating objects that vibrate is a way to discern potential threats and locate targets. However, current vibrometry technology typically measures only the global vibration of target and cannot create an extended spatial measurement of the vibration profile of the target. These solutions cannot identify what the target is, nor can they locate potential weak spots on the target, because they lack sp ...

    STTR Phase I 2019 Department of DefenseAir Force
  5. Small UAS compatible Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensors

    SBC: NEVADA NANOTECH SYSTEMS, INC.            Topic: AF18BT009

    Proposed herein are novel design methodologies to create sensors for chemical, biological, radiological, nuclear and/or explosive (CBRNE) detection aboard a Small Unmanned Aerial System (SUAS), as well as intelligent Bayesian-based plume analysis and source detection algorithms that offer capabilities for the Air Force above and beyond the state of the art. The assembled technical team of experts ...

    STTR Phase I 2019 Department of DefenseAir Force
  6. Catastrophic Optical Damage Mitigation in Quantum Cascade Lasers by Facet Disordering

    SBC: N2 Biomedical, LLC            Topic: N19AT004

    Quantum cascade laser optical output power is limited by laser facet catastrophic optical damage (COD). In edge-emitting semiconductor lasers COD is a thermal runaway process wherein the front facet of the laser heats under high power operation. This facet heating reduces the semiconductor bandgap which increases the optical absorption and also increases the electrical injection current in the fac ...

    STTR Phase I 2019 Department of DefenseNavy
  7. Process to Mitigate Catastrophic Optical Damage to Quantum Cascade Lasers

    SBC: PENDAR TECHNOLOGIES LLC            Topic: N19AT004

    In this program, we will develop solutions to optimize QCL fabrication processes, such as facet passivation and high thermal conductivity coatings, that will mitigate the reliability issues for high power QCL applications. In phase I, we will first evaluate all concepts and efforts that have been largely investigated for GaAs based high power diode lasers and transfer the knowledge to InP based QC ...

    STTR Phase I 2019 Department of DefenseNavy
  8. Process to Mitigate Catastrophic Optical Damage to Quantum Cascade Lasers

    SBC: IRGLARE LLC            Topic: N19AT004

    The development of a catastrophic optical damage model for quantum cascade lasers describing instantaneous laser damage at high optical power levels is proposed. The model will be validated by comparison to experimental data. Based on obtained results, changes to laser design and laser fabrication resulting in an increased damage threshold will be implemented. The work will ultimately result into ...

    STTR Phase I 2019 Department of DefenseNavy
  9. GECCO: Gecko-gripper for EOD with Cavitation Cleaning Operation

    SBC: VALOR ROBOTICS, LLC            Topic: N19AT011

    The objective of the Phase I proposal is to investigate the application of controlled cavitation cleaning technology in conjunction with gecko-inspired mechanical adhesion and soft elastomeric applicators for use in non-intrusive EOD operations. This investigation requires the proof-of-concept testing and validation of a controlled cavitation cleaning mechanism, and a soft robotic gecko-inspired m ...

    STTR Phase I 2019 Department of DefenseNavy
  10. Power Dense Turbo-Compression Cooling Driven by Waste Heat

    SBC: MANTEL TECHNOLOGIES, INC.            Topic: N19AT013

    The U.S. Navy seeks methods to improve the fuel economy of marine diesel engines through utilization of waste heat. Low temperature engine jacket water, lubrication oil, and aftercooler air are largely untapped streams of thermal energy on these ships, but their utilization circumvents many operation challenges associated with exhaust gases. For example, variable and high exhaust gas temperatures ...

    STTR Phase I 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government