You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Plasmonic MEMS Sensor Array

    SBC: Five Stones Research Corporation            Topic: A10aT002

    Sensor development researchers and engineers have perpetually sought novel methods to reduce sensor size and improve performance. Continued miniaturization of sensors through micromachining has enabled novel applications and introduced new paradigms for engineered systems to interact with the world. The challenge has always been to improve performance while continually reducing size. In the curren ...

    STTR Phase II 2013 Department of DefenseArmy
  2. Vacuum Integrated System for Ion Trapping

    SBC: COLDQUANTA, INC.            Topic: A15AT009

    We propose to develop a compact, integrated ion trap quantum system for quantum sensor, timekeeping, and computing applications. To do so, we leverage ColdQuantas expertise in miniature ultra-high vacuum (UHV) and atom chip technology and Duke Universitys expertise in microfabricated surface ion traps and quantum information processing experiments. We will produce a manufacturable, commercializa ...

    STTR Phase II 2016 Department of DefenseArmy
  3. Ceramic Polymer Composite Electrolyte

    SBC: CORNERSTONE RESEARCH GROUP INC            Topic: A14AT014

    Cornerstone Research Group, Inc. (CRG) has developed a solid Ceramic Polymer Composite Electrolyte (CPCE) for metal-air power sources. The existing electrolyte solutions favor ionic conductivity at the sacrifice of mechanical performance resulting in metal-air batteries that are fragile and unpractical for portable applications. In Phase I, CRG developed a solid CPCE by combining superionic conduc ...

    STTR Phase II 2016 Department of DefenseArmy
  4. Ultrafast Physical Random Number Generation Using Chaos

    SBC: Torch Technologies, Inc.            Topic: A14AT002

    Random numbers are essential for a growing number of modern applications. As computer speed and communications bandwidth have increased the potential for practical streaming cipher and large-scale Monte Carlo simulations have become technologically feasible. For these and other applications, ultrafast random number generators are essential. This is intuitively clear. Additionally, however, the ide ...

    STTR Phase II 2016 Department of DefenseArmy
  5. High Gain, High Power PCSS with Integrated Monolithic Optical Trigger

    SBC: NESS ENGINEERING, INC.            Topic: A14AT004

    The objective of this Phase II proposal is to continue the development of a Photoconductive Semiconductor Switch (PCSS) with an integrated optical trigger that can switch at least 30 kV, 1 kA, 20 ns pulses with jitter 108 shots. Ness Engineering, Inc. (NEI) and Texas Tech University (TTU) propose to utilize wide bandgap materials to demonstrate lock-on switching and allow much less optical trigger ...

    STTR Phase II 2016 Department of DefenseArmy
  6. An Ultra-Compact Low-Power THz Radio SoC with On-Chip Antenna and Energy Harvesting

    SBC: Digital Analog Integration, Inc.            Topic: A15AT005

    There is an unmet demand for ultra-low-power, ultra-compact and low-cost radios to address emerging sensing and communication needs for military and commercial applications such as IoT/IoE. To overcome the limitations in existing bulky and power hungry radios, we propose a disruptive solution by integration of a nano-scaled THz transceiver, on-chip antenna, and energy harvesting circuits in a form ...

    STTR Phase II 2016 Department of DefenseArmy
  7. Hybrid Battery/Supercapacitor Energy Storage Device

    SBC: ADA TECHNOLOGIES, INC.            Topic: A15AT010

    ADA Technologies, Inc. (ADA) and Dr. Massoud Pedram at the University of Southern California (USC) have successfully completed a Phase I STTR effort for the development of a lithium ion (Li-ion)/ supercapacitor hybrid electrical energy storage system (HEESS) to afford pulse power characteristics (projected ~10 kW/kg) in a high energy system (100-150 Wh/kg). The system is enabled via a constant cur ...

    STTR Phase II 2016 Department of DefenseArmy
  8. Parallel Two-Electron Reduced Density Matrix Based Electronic Structure Software for Highly Correlated Molecules and Materials

    SBC: Q-CHEM INC            Topic: A14AT013

    Variational two-electron reduced-density-matrix (v2RDM) methods can provide a reference-independent description of the electronic structure of many-electron systems that naturally captures multireference correlation effects. These methods offer one of the few possible routes to performing the large-active-space computations that are necessary for the qualitative description of strongly-correlated ...

    STTR Phase II 2016 Department of DefenseArmy
  9. Electronically Tunable High-Power Infrared Lasers for Standoff Detection Applications

    SBC: Pranalytica, Inc.            Topic: A14AT015

    In response to the Army STTR Topic A14A-T015 solicitation for tunable high-power LWIR lasers for standoff detection applications, Pranalytica proposed to develop a compact, rugged and highly reliable wavelength tunable quantum cascade laser (QCL) module delivering over 5W of peak power and over 0.5W of average power in the spectral region spanning from 7 to 11m. The proposed approach is based on a ...

    STTR Phase II 2016 Department of DefenseArmy
  10. On Demand Energy Activated Liquid Decontaminants and Cleaning Solutions

    SBC: TDA RESEARCH, INC.            Topic: A12aT005

    Decontamination of chemical and biological threats demands a very reactive solution. It is ideal to generate the decontaminants on-site: the activated decontaminant is highly reactive and quickly destroys chemical and biological warfare agents; prior to activation the ingredients can be safely stored for years, shipped, and handled. TDA's electrochemical decontamination (eClO2) technology u ...

    STTR Phase II 2013 Department of DefenseArmy
US Flag An Official Website of the United States Government