You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Coupled Multi-Physics Tool for Analysis of Structural Profile Disruption Effects of Aerovehicles

    SBC: CFD RESEARCH CORPORATION            Topic: AF17AT025

    High speed air vehicles operate at material strength performance limits and are at significant risk when subjected to additional localized heating that can result in softening, pitting and burn-through the material and potentially change the vehicle structural profile. These effects degrade aerodynamic performance. The team of CFDRC and UDRI proposed to develop, validate and deliver a comprehensiv ...

    STTR Phase II 2018 Department of DefenseAir Force
  2. Fast Response Heat Flux Sensors and Efficient Data Reduction Methodology for Hypersonic Wind Tunnels

    SBC: Ahmic Aerospace LLC            Topic: AF17AT001

    Accurate knowledge of heat flux is critical in assessing the design, performance, and survivability of hypersonic flight vehicles. Despite decades of research and testing, much is still unknown regarding hypersonic instabilities and transition mechanisms that define the state of the boundary layer. While the existence of these features is known, the ability to accurately measure them remains a cha ...

    STTR Phase II 2019 Department of DefenseAir Force
  3. Operating System Mechanisms for Many-Core Systems

    SBC: SECURBORATION, INC.            Topic: OSD11T04

    In the Phase I portion of this STTR, Securboration and renowned multicore expert Dr. Frank Mueller from North Carolina State University designed, developed, and benchmarked the proof-of-concept Pico-kernel Adaptive and Scalable Operating-system (PICASO) for many-core architectures. The Securboration Team took a scientific, experimentation-based approach to identifying and resolving shortcomings wi ...

    STTR Phase II 2013 Department of DefenseAir Force
  4. Mission and Information Assurance through Cyber Atomics

    SBC: SECURBORATION, INC.            Topic: AF17BT004

    Cyber Risk Assessments for Threatened Environments (CRATE) is a system that produces actionable, mission-level alerts when anomalous behaviors indicative of cyber-attack are discovered within deployed mission-critical cyber-systems. CRATE is particularly relevant to deployment scenarios involving third-party infrastructure, such as deployment to a Platform as a Service (PaaS) provider or other clo ...

    STTR Phase II 2019 Department of DefenseAir Force
  5. Active Control of a Scramjet Engine

    SBC: Ahmic Aerospace LLC            Topic: AF15AT19

    Scramjet engines are designed to operate across a wide Mach number range and typically incorporate isolator sections to provide sufficient back-pressure margin and prevent unstart. As military requirements become increasingly demanding, an active, closed-loop control system is necessary to maintain engine stability and power output. During Phase I, key components of a scramjet control system were ...

    STTR Phase II 2016 Department of DefenseAir Force
  6. Rydberg-atom RF Sensors for Direction Finding and Geolocation (RADARS)

    SBC: COLDQUANTA, INC.            Topic: AF17AT028

    ColdQuanta, in partnership with Dr. Zoya Popovic at the University of Colorado at Boulder, proposes to develop a three-dimensional quantum-enhanced radio-frequency (RF) signal sensor and direction finder. Our approach combines Rydberg-atom-based RF electrometry and discrete lens arrays (DLAs) of planar antennas. The DLA will serve as a Fourier optic for an incident wave, and a Rydberg-atom RF elec ...

    STTR Phase II 2018 Department of DefenseAir Force
  7. Plasmonic Infrared Scene Projector

    SBC: TRUVENTIC LLC            Topic: AF17AT022

    Truventic proposes to design, build and characterize a 5x5 array of fully functional MEMS-based plasmonic infrared scene projector pixels which operate at multiple wavelengths to support hardware-in-the-loop testing of missile seekers, forward looking IR cameras (FLIR), counter measure simulation and tracking systems. The approach avoids known limitations of resistive arrays and provides high dyna ...

    STTR Phase II 2018 Department of DefenseAir Force
  8. Robust-Mode Analysis, Reduced-Order Modeling, and Intelligent Control Strategies for Reacting and Non-Reacting Flows

    SBC: SPECTRAL ENERGIES LLC            Topic: AF12BT15

    This Phase-II STTR research effort is designed to forward the engineering investigation of the dynamics and control of turbulent combustion in high-pressure combustion systems by developing a set of game-changing nonlinear analysis tools that can significantly improve the post-processing speed and intelligent data mining of large numerical or experimental data sets. Moreover, a system based on non ...

    STTR Phase II 2018 Department of DefenseAir Force
  9. Development of Multidisciplinary, Multi-Fidelity Analysis and Integration of Aerospace Vehicles

    SBC: AURORA FLIGHT SCIENCES CORPORATION            Topic: AF08BT03

    ABSTRACT: Aurora Flight Sciences, in collaboration with the Massachusetts Institute of Technology (MIT), proposes to further develop and test in realistic settings an innovative method for representing and managing multidisciplinary design information from a wide range of analysis tools. The practical implication resulting from this novel approach is a mathematical framework to confidently determ ...

    STTR Phase II 2010 Department of DefenseAir Force
  10. Design and Analysis of Multi-core Software

    SBC: SECURBORATION, INC.            Topic: OSD11T03

    Modern processor design is trending increasingly toward multicore architectures. This is problematic for programmers because writing a correct parallel program is known to be difficult compared to writing the equivalent sequential program. Additionally, a wide body of sequential code has already been developed that cannot exploit the power offered by these new cores because it was written in a s ...

    STTR Phase II 2013 Department of DefenseAir Force
US Flag An Official Website of the United States Government