You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Large Eddy Simulation (LES) Flow Solver Suitable for Modeling Conjugate Heat Transfer

    SBC: Kord Technologies, Inc.            Topic: N19BT027

    Accurate prediction heat transfer in gas turbine components subject to cooling requires high fidelity modeling of heat transfer in the presence of high Reynolds number turbulent flow. The cooling internal to the blades results in sustained temperature gradients within the structural parts, from low temperature in the interior of the structure to increasingly higher temperature closer to the surfac ...

    STTR Phase I 2019 Department of DefenseNavy
  2. AI-Driven, Secure Navy Mission Planning via Deep Reinforcement Learning and Attribute-Based Multi-Level Security

    SBC: E H Group, Inc.            Topic: N19BT029

    Current mission planning systems allow strike planners and operations centers to perform time-sensitive strike planning, execution monitoring, and validate mission effects using XML-based tools that visualize time critical attack plan and track plan status vs. execution. In this proposed STTR Phase I design for the Next Generation Navy Mission Planning (NGNMPS) system, we will identify expanded op ...

    STTR Phase I 2019 Department of DefenseNavy
  3. Complex Event Detection in Video and Communications

    SBC: SOAR TECHNOLOGY INC            Topic: N10AT040

    We will demonstrate the feasibility of detecting tactically meaningful complex events in sensor input streams using an efficient pattern matching technology embodied in the Soar cognitive architecture. Our focus in Phase I will be on video streams, such as those that might be produced by unattended ground sensors or unmanned aerial systems. To reduce risk, we propose devoting a portion of our effo ...

    STTR Phase I 2010 Department of DefenseNavy
  4. Situational Awareness as a Man-Machine Map Reduce Job

    SBC: SOAR TECHNOLOGY INC            Topic: N13AT024

    Improving situational awareness and accuracy of decisions in complex missions relying on streaming open-source data requires scalable information extraction and fusion in collaboration between Man and Machine reasoning. SoarTech, with its proven track-record of basic and applied research and transition into actual deployment, will bring forward advanced imagery and text processing technology integ ...

    STTR Phase I 2013 Department of DefenseNavy
  5. Meaning-Aligned Record Synthesis for Training Emerging Capabilities (MARSTEC)

    SBC: SOAR TECHNOLOGY INC            Topic: N18AT003

    Operational experts collect recorded data about emerging tactics, techniques, and procedures (TTPs) from sources such as live and virtual training exercises, and numerous test and evaluation simulations. However, instructional designers cannot easily reuse the recorded data to create new training. Without sufficient access to operational experts, expert knowledge is inaccessible and fragmented, of ...

    STTR Phase I 2018 Department of DefenseNavy
  6. Twiner

    SBC: SOAR TECHNOLOGY INC            Topic: N18AT019

    We currently lack the ability to holistically and autonomously look across all three layers of cyberspace (persona, logical and physical) and identify interesting patterns, which would give us an edge in understanding complex activities in and through cyberspace. To address this challenge, Soar Technology (SoarTech) and the GeorgiaTech Research Institute (GTRI) propose Twiner, an intelligent syste ...

    STTR Phase I 2018 Department of DefenseNavy
  7. Probabilistic Prediction of Location-Specific Microstructure in Turbine Disks

    SBC: UES INC            Topic: N10AT028

    Thermo-mechanical processes of turbine disks have been progressively improved to meet microstructural requirements tailored for advanced, sustainable high temperature performances. However, the chemistry of typical Ni-base turbine disk alloys is very complex, and yields a variety of phases and microstructural anomalies under different thermo-mechanical heat treatments. These microstructural hetero ...

    STTR Phase I 2010 Department of DefenseNavy
  8. Innovative additive manufacturing (AM) process for successful production of 7000 series aluminum alloy components using Smart Optical Monitoring Syste

    SBC: SENSIGMA LLC            Topic: N18AT005

    Naval aircraft components are routinely made of 7000 series aluminum alloys due to their strength, weight and fatigue properties. Present Additive Manufacturing (AM) processes falls short of producing 7000 series Al alloys successfully due to lack of porosity, thermal and composition control. In-situ methods implemented to date largely only yield information about the component surface and other m ...

    STTR Phase I 2018 Department of DefenseNavy
  9. System for Nighttime and Low-Light Face Recognition

    SBC: POLARIS SENSOR TECHNOLOGIES INC            Topic: SOCOM18A001

    The objective of this proposal is to develop instrumentation and algorithms for acquiring facial features for facial recognition in low- and no-light conditions.We will use cross-spectrum matching by exploiting infrared polarimetric imagery which tends to show features that match more closely visible imagery than conventional infrared.In addition to thermal infrared, we will also test subjects in ...

    STTR Phase I 2018 Department of DefenseSpecial Operations Command
  10. Power and Propulsion System Optimization

    SBC: CORNERSTONE RESEARCH GROUP INC            Topic: N18AT012

    Unmanned underwater vehicles (UUVs) are currently limited in the type of missions they can perform. Limited available power limits which sensors can be run or for how long, and also limits the duration and range of the mission. More efficient propulsion systems would increase the power available to the UUV payload. Improved power distribution systems and control systems would also increase the ava ...

    STTR Phase I 2018 Department of DefenseNavy
US Flag An Official Website of the United States Government