You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Ocean Surface Vector Winds (OSVW)

    SBC: ATMOSPHERIC & SPACE TECHNOLOGY RESEARCH ASSOCIATES LLC            Topic: N16BT026

    Ocean surface winds are critically important in naval operations. They may aid, hinder, or negate maneuvers and operations, and are a primary consideration in routing ships. Continuous and reliable information on favorable and unfavorable sea state is critical for a broad range of naval missions, including strategic ship movement and positioning, aircraft carrier operations, aircraft deployment, e ...

    STTR Phase II 2019 Department of DefenseNavy
  2. Forensic Models of Cyberspace Behaviors

    SBC: Intelligenesis, LLC            Topic: N19AT021

    Our solution will provide an automated system driven by advanced analytics and machine learning techniques to capture network traffic (including potential malicious events), perform forensic analysis of the events to identify threat actor tactics, techniques, and procedures (TTPs), create a database of classified events and TTPs (threat models) from which connections can be made between events, ac ...

    STTR Phase I 2019 Department of DefenseNavy
  3. A Wavelength-scalable Dual-stage Photonic Integrated Circuit Spectrometer

    SBC: Physical Sciences Inc.            Topic: N19AT023

    In this program, Physical Sciences Inc. (PSI) will team with Professor Ali Adibi’s group at the Georgia Institute of Technology to develop a photonic integrated circuit (PIC) spectrometer that can simultaneously achieve high-resolution over wide-bandwidths using a scalable and foundry-ready approach. While a PIC-based spectrometer is a key component for on-chip Raman, fluorescence, and absorptio ...

    STTR Phase I 2019 Department of DefenseNavy
  4. Measuring Manipulation in Audiences Targeted by Coordinated Social Media Dissemination Tactics

    SBC: Intelligent Automation, Inc.            Topic: N19AT024

    The information environment has become a new battlefield for adversaries of the United States and its allies. Coordinated campaigns have been waged to radicalize, incite division, inflame, influence elections and public opinion on a variety of issues. These campaigns have weaponized social media by forming networks of synthetic accounts (botnets) which spread mis/disinformation, polarize groups an ...

    STTR Phase I 2019 Department of DefenseNavy
  5. ALCHEMI: Attacker Learning in Cybernetworks using Heterogeneous Energy-guided Model Inference

    SBC: APTIMA INC            Topic: N19AT021

    The United States relies on networks of cyber-physical systems to conduct military and commercial operations, such as logistics, transportation, information sharing, energy production and distribution, financial transactions, elections, and infrastructure management. As the volume and diversity of cyber-attacks on these networks dramatically increase, there is a growing need for advanced tools and ...

    STTR Phase I 2019 Department of DefenseNavy
  6. FPGA Vulnerability Analysis Tools

    SBC: BLUERISC INC            Topic: N19AT018

    BlueRISC's proposed solution takes the form of an automated toolkit that is able to analyze an FPGA bitstream with respect to exploitability. The solution relies on an FPGA-agnostic framework for automatically reverse-engineering an FPGA-bitstream into an intermediate representation (IR). This IR is FPGA agnostic and enables a program-analytic framework for extracting a fundamental FPGA-centric Vu ...

    STTR Phase I 2019 Department of DefenseNavy
  7. Cyber Adversary Discovery Engine (CADE)

    SBC: CHARLES RIVER ANALYTICS, INC.            Topic: N19AT021

    We propose to design and build the Cyber Adversary Discovery Engine (CADE) for forensic cyber analysis. CADE combines expressive behavioral modeling technology with machine learning to automatically recognize adversary behaviors, goals and tactics, techniques and procedures (TTPs). CADE can further automatically recognize changes in adversary TTPs that occur in forensic data. A key technical capab ...

    STTR Phase I 2019 Department of DefenseNavy
  8. High Speed Spinning Scroll Expander (HiSSSE)- Organic Rankine Cycle for Increased Naval Ship Power Density and Fuel Efficiency

    SBC: Air Squared, Inc.            Topic: N19AT013

    Waste heat from Naval diesel generators provides significant opportunity to introduce organic Rankine cycles (ORC) to increase their fuel efficiency. The objective of the proposed effort is to design and demonstrate a high-speed, spinning scroll expander (HiSSSE) ORC as a power dense waste heat recovery system for diesel generators on ships. The system will leverage Air Squared’s spinning scroll ...

    STTR Phase I 2019 Department of DefenseNavy
  9. Compact Waste Heat Recovery Power Generation System

    SBC: SPECTRAL ENERGIES LLC            Topic: N19AT013

    The STTR topic N19A-T013 seeks innovative technology to improve the power density and efficiency of propulsion and power generation devices. To address this challenge, Spectral Energies in collaboration with its academic partner Dr. Rory Roberts at Wright State University proposes to develop a compact heat recovery system based on a supercritical CO2 based Rankin Cycle. At the end of the STTR prog ...

    STTR Phase I 2019 Department of DefenseNavy
  10. Power-Dense Electrical Rotating Machines for Propulsion and Power Generation

    SBC: CONTINUOUS SOLUTIONS Inc            Topic: N19AT007

    The primary objective is to develop electric machine/drive topologies and power architectures that achieve the power densities required for 50% more power without the increase in weight or space requirements. In addition to PMSM-based designs, two new machine topologies will be considered. The first is a trapped flux coreless (TFC) machine that utilizes superconducting pucks made of YBCO to produc ...

    STTR Phase I 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government