You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. End-to-end Naval Asset Damage Detection System

    SBC: INTELLIGENT FIBER OPTIC SYSTEMS CORP            Topic: N10AT042

    IFOS will demonstrate the feasibility of a minimalistic, yet powerful, distributed network of piezoelectric actuators and ultrasonic wave detecting fiber optic Bragg grating (FBG) sensors interrogated by a high frequency parallel processing FBG interrogator together with innovative mathematical and computational algorithms to process, store and visualize (via damage index maps) massive amounts of ...

    STTR Phase I 2010 Department of DefenseNavy
  2. Tactical 4 K Cryocooler: Study and Architecture Definition

    SBC: IRIS TECHNOLOGY CORPORATION            Topic: N10AT026

    Iris Technology, in collaboration with Georgia Tech and Raytheon, proposes to perform advanced 3D CFD modeling to guide the architecture selection for a tactical 4K Cryocooler. Iris will lead the System Design and Program Management efforts. Georgia Tech is the lead organization on the Analysis. Raytheon is providing the underlying mechanical cryocooler technology. The preliminary technical base ...

    STTR Phase I 2010 Department of DefenseNavy
  3. Miniature Electronic DFI for 5-20 Hp HFE

    SBC: JM HARWOOD, LLC            Topic: N10AT033

    JM Harwood, LLC, and UAH Propulsion Research Center propose the development of an electronic miniature Direct Fuel Injection (DFI) system for 5-20 hp heavy fuel engines. This highly integrated Very Small Injection Technology (V-SInTech) DFI system will be capable of (a) multiple injections per cycle, (b) variable injection timing, (c) variable spray penetration depth, (d) real-time closed loop mod ...

    STTR Phase I 2010 Department of DefenseNavy
  4. Development of High-Efficiency, High Power Electron Beam Accelerator Technologies

    SBC: Jp Accelerator Works            Topic: N10AT023

    This research investigates the feasibility of improving operational readiness, reliability and availability of high current cryogenic rf linear accelerators using a cryogenic compatible resonant coupling technique to couple all of the accelerator sections together, including any room temperature portion. This technique guarantees a single resonant frequency for the system insuring rapid turn on. T ...

    STTR Phase I 2010 Department of DefenseNavy
  5. Adaptive Fleet Synthetic Scenario Research

    SBC: KAB LABORATORIES INC.            Topic: N10AT044

    Synthetic scenario-based training of Navy personnel in the use of Navy SIGINT/IO systems has helped to reduce training costs, and it has enabled the personnel to be trained in an environment that sufficiently approximates real-world situations that could not otherwise be accomplished within the class room. However, scenario development is highly complex and involves a great deal of human effo ...

    STTR Phase I 2010 Department of DefenseNavy
  6. An Integrated Physics-Based Framework for Detecting Precursor to Damage in Naval Structures

    SBC: Los Gatos Research            Topic: N10AT042

    Aging aircraft commonly suffers from several types of degradation including fatigue cracking and lack of bonding. It is virtually impossible to predict degradation in structural performance or when a component or structure will fail due to the inability to test new material systems under all loading conditions and under all environmental conditions. A material state awareness system using minimali ...

    STTR Phase I 2010 Department of DefenseNavy
  7. A Fast-Response, Electronically Controlled Fuel Injection System for Small Heavy Fuel Engines with Multi-Fuel Capabilities

    SBC: MAINSTREAM ENGINEERING CORP            Topic: N10AT033

    Advances in electronically controlled injection technologies for diesel engines have provided a method to improve medium- to heavy-duty engine performance through increased injection pressures, multiple injections, and injection rate shaping. Although these injection systems have been primarily limited to larger engines, the ability to rapidly and precisely meter fuel for smaller engines is partic ...

    STTR Phase I 2010 Department of DefenseNavy
  8. Innovative Passive Magnetic Thrust Bearings for High-Speed Turbomachinery

    SBC: MAINSTREAM ENGINEERING CORP            Topic: N10AT037

    In miniature gas turbines for UAV applications, traditional bearings exhibit a typical lifetime of only 25 hours due to excessive axial loading. Mainstream proposes to use a passive, permanent magnet thrust bearing to alleviate this problem and increase service life to over 1000 hours. Since this type of bearing is non-contacting, it can operate at very high rotational speeds with minimal heat gen ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Demonstration of a JP-8 Powered Compact ECU

    SBC: MAINSTREAM ENGINEERING CORP            Topic: OSD09T002

    Military shelters currently use electrically driven Environmental Control Units (ECUs) to provide cooling for the air inside the shelter. The ECU is vapor compression cycle powered by a diesel generator, operating on JP-8 fuel. Other than fueling jet engines, the largest drain on U.S. military fuel supplies in current operations comes from running generators at forward operating bases. In hot cli ...

    STTR Phase I 2010 Department of DefenseNavy
  10. Characterizing the Impact of Control Surfaces Free-Play on Flutter

    SBC: Materials Technologies Corporation            Topic: N10AT003

    Free-play nonlinearity of the control surfaces has a direct impact on aircraft’s dynamic stability characteristics. . It is impossible to design and manufacture a control surface with zero free-play. As control surface free-play increases, tighter limits must be imposed on the aircraft mission capability. Typically, researchers have utilized an oversimplified piecewise-linear torque-rotation rel ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government