You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Experimental analysis and model development of pyrolysis/combustion of coal/biomass in a bench scale spouted bed reactor

    SBC: PRECISION COMBUSTION, INC.            Topic: 15a

    There is widespread concern regarding carbon emissions from fossil fuels, resulting in a drive towards improved efficiency in reactor (boiler) performance while reducing carbon emissions. Coal will continue to be a primary source of energy for economic growth for the foreseeable future, thus there is a push to reduce net carbon emissions of coal operated plants by replacing part of the coal with b ...

    STTR Phase I 2016 Department of Energy
  2. Electromagnetic Signal Processing: Techniques and Classification Methodologies

    SBC: Power Fingerprinting, Inc            Topic: 01c

    Detecting electromagnetic (EM) signals generated by electrical and electronic processes and equipment in the presence of large amounts of clutter and unknown obstacles or infrastructure along the channel presents a unique set of challenges, with the most critical being: Lack of signal design, Unknown channel conditions, and Potential active attempts to hide or obfuscate the signals. Recently, ther ...

    STTR Phase I 2017 Department of Energy
  3. Economical Self-Powered Portable Clean Energy Desalination System

    SBC: ITN ENERGY SYSTEMS, INC.            Topic: 09

    Many communities face water scarcity as a fundamental challenge to their economic and social development. Seawater is an abundant source which can be reached by most of the countries in the world. In order to utilize seawater as potable water, it is required to remove the high salinity. Desalination technologies are intended for the removal of dissolved salts that cannot be removed by conventional ...

    STTR Phase I 2016 Department of Energy
  4. Recovery Act- Scale-up of the Nanomanufacturing of Coated Powders for Superior Battery Electrode Materials

    SBC: ALD NANOSOLUTIONS, INC            Topic: 09b

    There is significant opportunity for energy efficiency improvements in the industrial and manufacturing sectors in the U.S., both from the production and consumption perspective. Higher energy density battery materials will play a role in both, through improved storage of electricity from renewable sources, the enabling of electric vehicles, and through the development of longer lasting, higher po ...

    STTR Phase I 2010 Department of Energy
  5. Biological CO2 Fixation for the Production of Formic Acid Powered by Sugars

    SBC: Gate Fuels Incorporated            Topic: 12a

    Formic acid (FA, CH2O2) is the simplest carboxylic acid. It is mainly used as a preservative and antibacterial agent in livestock feed. A significant fraction of FA is used in the leather-processing, textile and rubber industries and a small fraction of formic acid is used as a cleaning agent replacing mineral acids. Aqueous FA is a promising liquid hydrogen-storage carrier with a hydrogen storage ...

    STTR Phase I 2013 Department of Energy
  6. 1200 V/50 A AlGaN-GaN-Si MOS-HFETs and Schottky Rectifiers

    SBC: GENESIC SEMICONDUCTOR INC.            Topic: 11c

    DoEs recent emphasis on increasing fuel economy requires electrification of the vehicle powertrain, thus leading to extended range electric vehicles (EREVs), hybrid electric vehicles (HEVs), battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV). All electric propulsion systems require high current, high-voltage (600 V-1200 V), low-loss power semiconductor switches. Present electri ...

    STTR Phase I 2013 Department of Energy
  7. Synthesis of a Potential Fast Ionic Conductor for Mg+ Ions

    SBC: POWDERMET INC            Topic: 15b

    Development of a solid with high conductivity of Mg2+ cations will allow application of that substance as membrane in magnesium-air batteries. These batteries will be much cheaper, safer, and at the same time store much more energy than lead-, lithium- or sodium batteries with the same weight. Such batteries would be ideal for electric vehicles and for the off-peak storage of renewable elect ...

    STTR Phase I 2013 Department of Energy
  8. Virtual Accelerator Support for HPC Clouds

    SBC: RNET TECHNOLOGIES INC            Topic: 02a

    Due to huge levels of computing parallelism and higher performance per watt, comuting accelerators are crucial for increasing HPC efficiency. This is economically significant for small and medium size manufacturing companies (SMMs) and essential for transition to Exascale computing. However, due to high procurement costs, in-house maintenance of an accelerated HPC cluster is prohibitive for many ...

    STTR Phase I 2013 Department of Energy
  9. Single Step Manufacturing of Low Catalyst Loading Electrolyzer MEAs

    SBC: Proton Energy Systems, Inc.            Topic: 01a

    Proton exchange membrane (PEM) electrolysis is industrially important as a green source of high purity hydrogen, for chemical applications as well as energy storage. However, the energy required to manufacture these units is still high, due to the multi-step processes employed. Today, the majority of cost and energy use in PEM electrolyzer manufacturing is contributed by the cell stack manufacturi ...

    STTR Phase I 2013 Department of Energy
  10. Low-Cost, High-Accuracy, Whole-Building Carbon Dioxide Monitoring for Demand Control Ventilation

    SBC: DIOXIDE MATERIALS, INC.            Topic: 11

    The objective of the proposed work is to develop, demonstrate, and evaluate new technologies for low-cost, high-accuracy, whole-building CO2 monitoring for demand control ventilation. The work builds on a private/public partnership formed between Dioxide MaterialsTM and the Institute for Sensing and Embedded Network Systems Engineering (I-SENSE) at Florida Atlantic University. In previous, NSF-sup ...

    STTR Phase I 2016 Department of Energy
US Flag An Official Website of the United States Government