You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Compact Laser Drivers for Photoconductive Semiconductor Switches (16-RD-863)

    SBC: UES INC            Topic: DTRA16A004

    Compact Electromagnetic Pulse Module (EMP) capable of being arranged in series-parallel planar or cylindrical arrays is needed to simulate nuclear weapon effects. High gain optically triggered photoconductive semiconductor switches (PCSS) based on Gallium arsenide (GaAs) with low timing jitter enables the development of planar or phased arrays of modular EMP or High Power Microwave (HPM) sources. ...

    STTR Phase I 2017 Department of DefenseDefense Threat Reduction Agency
  2. Computationally Efficient, Accurate and Uncertainty Characterized Chemical Kinetics for Hydrocarbon Fuels

    SBC: CFD RESEARCH CORPORATION            Topic: AF17AT004

    TBD

    STTR Phase I 2017 Department of DefenseAir Force
  3. Computation of Structural Energetic Materials Under Shock Loading: a Meso-Scale Framework

    SBC: STREAMLINE NUMERICS, INC.            Topic: AF16AT23

    Structural energetic materials or multifunctional energetic materials offer the ability to combine the high energy release rates of traditionalhigh explosives with structural strength. When successfully formulated therefore they can lead to light-weight, high-performance and hithertoinaccessible designs of munitions. The key feature of structural energetic materials (SEMs), perhaps even more so th ...

    STTR Phase I 2016 Department of DefenseAir Force
  4. Coupled Cluster Methods for Multi-Reference Applications

    SBC: ACES QC, LC            Topic: AF09BT40

    The objective of Phase I is to identify the strengths and weaknesses of the various multi-reference coupled-cluster (MRCC) methods that have been proposed for the description of molecular states depending upon near degeneracies and non-dynamic electron correlation. Such effects are encountered in bond breaking, at transition states, for complex open shell systems like transition metal atoms, and f ...

    STTR Phase I 2010 Department of DefenseAir Force
  5. Coupled Multi-Physics Tool for Analysis of Structural Profile Disruption Effects of Aerovehicles

    SBC: CFD RESEARCH CORPORATION            Topic: AF17AT025

    High speed air vehicles, already operating at material strength performance limits, are at significant risk when subjected to additional localized heating from sources such as directed energy. This localized heating may result in material softening, pitting and burn through causing structural damage and alteration of the structural profile. This damage can disrupt the aerodynamic performance and ...

    STTR Phase I 2017 Department of DefenseAir Force
  6. Cryodeposit Mitigation and Removal Techniques for Radiometric Calibration Chambers

    SBC: OPTICAL SCIENCES CORPORATION            Topic: AF12BT10

    ABSTRACT: Optical Sciences Corporation (OSC) and the University of Alabama in Huntsville"s Center for Applied Optics (UAH/CAO) will demonstrate the feasibility and present a plan for developing optical instrumentation for the monitoring, mitigation, and removal of cryodeposits accumulated on optical and mechanical surfaces in cryogenic-vacuum radiometric calibration chambers. OSC will investigat ...

    STTR Phase I 2013 Department of DefenseAir Force
  7. Customizing Security for Diverse IoT Endpoints

    SBC: Samraksh Company, The            Topic: AF16AT10

    Endpoints in the Internet of Things (IoT) vary considerably in their hardware-software architecture and their functional capability. The IoT marketplace is unlikely to converge on a single or a few dominant endpoint platforms in the near term and potentially even long term future.This creates a major problem and an opportunity for securing IoT endpoints that are being increasingly integrated in cr ...

    STTR Phase I 2016 Department of DefenseAir Force
  8. Design and Analysis of Multi-core Software

    SBC: SECURBORATION, INC.            Topic: OSD11T03

    Modern processor design is trending increasingly toward multicore architectures. This is problematic for programmers because writing a correct parallel program is known to be difficult compared to writing the equivalent sequential program. Additionally, a wide body of sequential code has already been developed that cannot exploit the power offered by these new cores because it was written in a s ...

    STTR Phase II 2013 Department of DefenseAir Force
  9. Development lightmap rendering technology to advance infrared simulation capabilities for training applications

    SBC: CORNERSTONE SOFTWARE SOLUTIONS INC            Topic: AF17AT012

    Recent technology advances have enabled the simulation community to achieve greater realism in virtual training environments. As new methods for synthetic image generation are developed, the lack of readily available supporting data to populate these specialized techniques limits their implementation. Currently the capability is not available to efficiently generate enhanced temporal energy maps ...

    STTR Phase I 2017 Department of DefenseAir Force
  10. Development of Adaptive Closure Models for Large Eddy Simulations of Lean Blow-Out Conditions

    SBC: CFD RESEARCH CORPORATION            Topic: AF16AT14

    The objective of the proposed Phase II effort is to establish fundamental understanding of combustion-physical mechanisms leading to blowout, the critical evaluation of model limitations in predicting these blowout processes and the development of an improved combustion model to enable the prediction of lean blowout (LBO) in swirl-stabilized combustors. For this, high-resolution numerical simulati ...

    STTR Phase II 2017 Department of DefenseAir Force
US Flag An Official Website of the United States Government