You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Power-Dense Electrical Rotating Machines for Propulsion and Power Generation

    SBC: CONTINUOUS SOLUTIONS LLC            Topic: N19AT007

    The primary objective is to develop electric machine/drive topologies and power architectures that achieve the power densities required for 50% more power without the increase in weight or space requirements. In addition to PMSM-based designs, two new machine topologies will be considered. The first is a trapped flux coreless (TFC) machine that utilizes superconducting pucks made of YBCO to produc ...

    STTR Phase I 2019 Department of DefenseNavy
  2. Compact Waste Heat Recovery Power Generation System

    SBC: SPECTRAL ENERGIES LLC            Topic: N19AT013

    The STTR topic N19A-T013 seeks innovative technology to improve the power density and efficiency of propulsion and power generation devices. To address this challenge, Spectral Energies in collaboration with its academic partner Dr. Rory Roberts at Wright State University proposes to develop a compact heat recovery system based on a supercritical CO2 based Rankin Cycle. At the end of the STTR prog ...

    STTR Phase I 2019 Department of DefenseNavy
  3. Robust, Low Permeability, Water-Filled Microcapsules

    SBC: LUNA INNOVATIONS INCORPORATED            Topic: N19BT030

    The Navy is actively developing a self-sealing, water-activated fuel bladder to mitigate fuel leaks upon mechanical shock (e.g. penetration by a .50 caliber bullet). To circumvent the requirement of an external water source to activate the self-sealing, this system will require water-filled microcapsules that can be incorporated directly into the polymeric matrix of the fuel bladder. Upon mechanic ...

    STTR Phase I 2019 Department of DefenseNavy
  4. Out-of-Oven Aerospace Composites

    SBC: CORNERSTONE RESEARCH GROUP INC            Topic: N18BT031

    Large aerospace composite structures currently require autoclaves and ovens to achieve desired performance which are expensive to purchase, costly to operate, and often limit part size and production rate. Ovens and autoclaves rely on convective heating which is inefficient, consumes large amounts of energy, and can be difficult to predict. Alternative cure processes using external heaters or hot ...

    STTR Phase I 2019 Department of DefenseNavy
  5. Carbon Nanotube-Based Heater Coatings for Processing of Thermosetting and Thermoplastic Composites

    SBC: MAINSTREAM ENGINEERING CORP            Topic: N18BT031

    For this research program, Mainstream will collaborate with Colorado State University (CSU) to develop a nanostructured heater capable of curing aerospace grade composites out-of-autoclave (OOA). The use of autoclaves is the primary cost driver in composite manufacturing due to size limitations, long processing times, and inefficient energy usage. Therefore, the Navy is looking to develop a nanost ...

    STTR Phase I 2019 Department of DefenseNavy
  6. Large Component, High-quality Composite Fabrication Using Nanocarbon Heating Films

    SBC: LUNA INNOVATIONS INCORPORATED            Topic: N18BT031

    Autoclaves are typically used to fabricate high-quality composite components with acceptable thermal properties and low void volume. They provide elevated temperature processing cycles and external pressure required for adequate compaction to achieve these desired properties. However, autoclaves represent large capital and energy investment while limiting the size of fabricated parts and productio ...

    STTR Phase I 2019 Department of DefenseNavy
  7. Real-Time Validation of Machine Intelligence Controlling Unmanned Vehicle Autonomous Operations

    SBC: XL SCIENTIFIC LLC            Topic: N18BT032

    To realize the full potential of autonomous systems, it is imperative that they behave safely, correctly, ethically, and legally. Providing these assurances through offline verification alone is insufficient, due to the complex and changing nature of autonomous systems. Online monitoring and corrective actions are necessary to account for uncertainties, and to increase trust between a human superv ...

    STTR Phase I 2019 Department of DefenseNavy
  8. Collective Meta-Reasoning Runtime Assurance of Machine Intelligence for Unmanned Autonomous Vehicles

    SBC: BARRON ASSOCIATES, INC.            Topic: N18BT032

    Barron Associates has teamed with a prominent researcher in the field of formal verification of cyber physical systems to propose a new paradigm in runtime assurance for complex autonomous systems controlled and operated by artificial machine intelligence. A two-stage approach is considered in which formal verification processes are first performed offline at algorithm design time. Online, during ...

    STTR Phase I 2019 Department of DefenseNavy
  9. Mathematically Rigorous Methods for Determining Software Quality

    SBC: GRAMMATECH INC            Topic: N10AT035

    Software is rarely written entirely from scratch. Typically, third-party commercial off-the-shelf (COTS) components are integrated into larger software systems used both in the commercial sector and in critical infrastructure. Third-party components often come in binary form, e.g., as dynamically linked libraries, Active X controls, or plain executables. That is, the source code for those componen ...

    STTR Phase I 2010 Department of DefenseNavy
  10. Ambient Noise Interferometry for Passive Characterization of Dynamic Environments

    SBC: ZEL TECHNOLOGIES LLC            Topic: N10AT004

    Non-invasive, stealthy nature of passive remote sensing combined with its low cost make passive techniques a promising supplement or replacement of traditional active remote sensing techniques. Coherent processing of diffuse wave fields has a proven potential for remote sensing of stationary environments. The proposed research extends noise interferometry to characterization of dynamic environment ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government