You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. FPGA Vulnerability Analysis Tools

    SBC: GRAMMATECH INC            Topic: N19AT018

    Field programmable gate arrays (FPGAs) are becoming increasingly critical components in advanced electronic systems. However, limited research has been applied to identifying critical vulnerabilities that could be present in the designs deployed on these FPGAs. The risk is further increased by the use of 3rd party intellectual property in many designs.GrammaTech is proposing to develop a Trust ver ...

    STTR Phase I 2019 Department of DefenseNavy
  2. Magnetoelectric Modules for Scavenging UAV Power from Electric Utility Lines

    SBC: NANOSONIC INC.            Topic: N19AT019

    NanoSonic will work with Penn State to develop, demonstrate and manufacture materials and systems to allow unmanned aerial vehicles (UAVs) to scavenge magnetic field energy from electric power lines and operate continuously in the field. NanoSonic will work with energy harvesting researcher Dr. Shashank Priya and a major US aerospace company to design, fabricate and demonstrate a prototype system ...

    STTR Phase I 2019 Department of DefenseNavy
  3. Energy Scavenging to Power Fielded Unmanned Aerial Systems

    SBC: LUNA INNOVATIONS INCORPORATED            Topic: N19AT019

    Unmanned aerial systems (UAS) provide strategic advantage for our nation’s warfighters, and the use of micro- and small-scale platforms on the battlefield is expected to increase significantly in coming years. This presents a logistical challenge in managing how system batteries are recharged throughout the UAS lifespan. The desired goal is to develop power systems that enable persistent deploym ...

    STTR Phase I 2019 Department of DefenseNavy
  4. Local Stochastic Prediction for UUV/USV Environmental Awareness

    SBC: APPLIED OCEAN SCIENCES, LLC            Topic: N19AT022

    This project delivers a system to assess local uncertainties and track the evolution of the maritime environment around unmanned platforms at sea. The system uses Navy ocean forecasts for initial environmental guesses and outlooks and implements a Reduced Order Model (ROM) derived from Dynamically Orthogonal (DO) solutions to deliver a local uncertainty picture (for the next 24-48 hours). The ROM- ...

    STTR Phase I 2019 Department of DefenseNavy
  5. Reduced Order Modeling (ROM) for UUV/USV Environmental Awareness-- 19-013

    SBC: METRON INCORPORATED            Topic: N19AT022

    In Phase I, Metron and the University of Miami (UM) propose to develop a theoretic reduction of dynamics framework applicable to the prediction of oceanographic fields in geophysical fluid dynamic models for use onboard unmanned platforms. Our approach leverages, extends and combines modern advances in the renormalization group and Bayesian probability combined with fluid dynamics modeling and for ...

    STTR Phase I 2019 Department of DefenseNavy
  6. HIGH STRENGTH, WATER-FILLED CERAMIC NANOCOMPOSITE MICROCAPSULES WITH LOW PERMEABILITY FOR SELF-SEALING FUEL BLADDERS

    SBC: NANOSONIC INC.            Topic: N19BT030

    During the proposed Navy STTR program, NanoSonic and Virginia Tech will design and synthesize innovative, high strength ceramic nanocomposite microcapsules filled with > 80 volume percent water that are empirically optimized to function as readily dispersed powdered additives with long-term water retention, durability during air craft bladder production, and rupture during ballistic shock. NanoSon ...

    STTR Phase I 2019 Department of DefenseNavy
  7. Robust, Low Permeability, Water-Filled Microcapsules

    SBC: LUNA INNOVATIONS INCORPORATED            Topic: N19BT030

    The Navy is actively developing a self-sealing, water-activated fuel bladder to mitigate fuel leaks upon mechanical shock (e.g. penetration by a .50 caliber bullet). To circumvent the requirement of an external water source to activate the self-sealing, this system will require water-filled microcapsules that can be incorporated directly into the polymeric matrix of the fuel bladder. Upon mechanic ...

    STTR Phase I 2019 Department of DefenseNavy
  8. Atomic Triaxial Magnetometer

    SBC: VESCENT TECHNOLOGIES INC.            Topic: N19AT006

    Vescent Photonics and MIT Lincoln Labs (MIT-LL) propose to develop a quantum-based vector magnetometer with low size, weight, power, and cost (SWaP+C) for Navy applications. The proposed system will rely on probing magnetically-sensitive, atomic-like transitions of nitrogen-vacancy (NV) centers in diamond to provide stable, high-bandwidth readout of the vector magnetic field with sub-picotesla sen ...

    STTR Phase I 2019 Department of DefenseNavy
  9. High Efficiency Computation of High Reynolds Number Flows

    SBC: Technosoft, Inc            Topic: N13AT009

    Although advancements in CFD technology and high performance computing have proven to be effective and reasonably accurate in assessing the hydrodynamic performance of naval vessels, the effort required to develop associated analysis models remains a challenging and time consuming task. Decomposing and manipulating the design geometry for mesh construction, while capturing near-field and far-field ...

    STTR Phase I 2013 Department of DefenseNavy
  10. Mechanical Property Characterization and Modeling for Structural Mo-Si-B Alloys for High Temperature Applications

    SBC: Imaging Systems Technology, Inc.            Topic: N13AT012

    Under this STTR, Imaging Systems Technology (IST) in cooperation with Georgia Institute Technology (GIT) will develop and mature models to predict mechanical properties of refractory alloys with an eye toward tailoring these alloys for specific applications. In particular, this research will focus on addressing core aspects of Integrated Computational Materials Engineering (ICME) as it applies to ...

    STTR Phase I 2013 Department of DefenseNavy
US Flag An Official Website of the United States Government