You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Catastrophic Optical Damage Mitigation in Quantum Cascade Lasers by Facet Disordering

    SBC: N2 Biomedical, LLC            Topic: N19AT004

    Quantum cascade laser optical output power is limited by laser facet catastrophic optical damage (COD). In edge-emitting semiconductor lasers COD is a thermal runaway process wherein the front facet of the laser heats under high power operation. This facet heating reduces the semiconductor bandgap which increases the optical absorption and also increases the electrical injection current in the fac ...

    STTR Phase I 2019 Department of DefenseNavy
  2. Process to Mitigate Catastrophic Optical Damage to Quantum Cascade Lasers

    SBC: PENDAR TECHNOLOGIES LLC            Topic: N19AT004

    In this program, we will develop solutions to optimize QCL fabrication processes, such as facet passivation and high thermal conductivity coatings, that will mitigate the reliability issues for high power QCL applications. In phase I, we will first evaluate all concepts and efforts that have been largely investigated for GaAs based high power diode lasers and transfer the knowledge to InP based QC ...

    STTR Phase I 2019 Department of DefenseNavy
  3. Process to Mitigate Catastrophic Optical Damage to Quantum Cascade Lasers

    SBC: IRGLARE LLC            Topic: N19AT004

    The development of a catastrophic optical damage model for quantum cascade lasers describing instantaneous laser damage at high optical power levels is proposed. The model will be validated by comparison to experimental data. Based on obtained results, changes to laser design and laser fabrication resulting in an increased damage threshold will be implemented. The work will ultimately result into ...

    STTR Phase I 2019 Department of DefenseNavy
  4. Hybrid Ceramic Matrix Composite/Polymer Matrix Composite (CMC-PMC) Skin Materials

    SBC: TRITON SYSTEMS, INC.            Topic: N18AT024

    Triton Systems, Inc. proposes to develop an affordable, lightweight and durable hybrid composite system for next generation structural frame composites that will survive both short- and long-term thermal and chemical exposure and abrasive conditions. The team will develop a hybrid materials system that is an improvement on traditional carbon fiber reinforced polymer (CFRP) systems in performance a ...

    STTR Phase II 2019 Department of DefenseNavy
  5. GECCO: Gecko-gripper for EOD with Cavitation Cleaning Operation

    SBC: VALOR ROBOTICS, LLC            Topic: N19AT011

    The objective of the Phase I proposal is to investigate the application of controlled cavitation cleaning technology in conjunction with gecko-inspired mechanical adhesion and soft elastomeric applicators for use in non-intrusive EOD operations. This investigation requires the proof-of-concept testing and validation of a controlled cavitation cleaning mechanism, and a soft robotic gecko-inspired m ...

    STTR Phase I 2019 Department of DefenseNavy
  6. Remotely Operated Vehicle (ROV) Deployed Underwater Attachment

    SBC: TEXAS RESEARCH INSTITUTE , AUSTIN, INC.            Topic: N19AT011

    Texas Research Institute Austin, Inc. (TRI/Austin) and Florida Institute of Technology (FIT) in the Phase I effort will implement the use of a revolutionary new class of adhesives to attach C4 to underwater mines. These adhesives are extraordinarily insensitive to water, tolerant of unprepared surfaces, and offer extremely rapid cure and excellent bond strength. These materials can be applied usin ...

    STTR Phase I 2019 Department of DefenseNavy
  7. Power Dense Turbo-Compression Cooling Driven by Waste Heat

    SBC: MANTEL TECHNOLOGIES, INC.            Topic: N19AT013

    The U.S. Navy seeks methods to improve the fuel economy of marine diesel engines through utilization of waste heat. Low temperature engine jacket water, lubrication oil, and aftercooler air are largely untapped streams of thermal energy on these ships, but their utilization circumvents many operation challenges associated with exhaust gases. For example, variable and high exhaust gas temperatures ...

    STTR Phase I 2019 Department of DefenseNavy
  8. High Speed Spinning Scroll Expander (HiSSSE)- Organic Rankine Cycle for Increased Naval Ship Power Density and Fuel Efficiency

    SBC: Air Squared, Inc.            Topic: N19AT013

    Waste heat from Naval diesel generators provides significant opportunity to introduce organic Rankine cycles (ORC) to increase their fuel efficiency. The objective of the proposed effort is to design and demonstrate a high-speed, spinning scroll expander (HiSSSE) ORC as a power dense waste heat recovery system for diesel generators on ships. The system will leverage Air Squared’s spinning scroll ...

    STTR Phase I 2019 Department of DefenseNavy
  9. Compact Waste Heat Recovery Power Generation System

    SBC: SPECTRAL ENERGIES LLC            Topic: N19AT013

    The STTR topic N19A-T013 seeks innovative technology to improve the power density and efficiency of propulsion and power generation devices. To address this challenge, Spectral Energies in collaboration with its academic partner Dr. Rory Roberts at Wright State University proposes to develop a compact heat recovery system based on a supercritical CO2 based Rankin Cycle. At the end of the STTR prog ...

    STTR Phase I 2019 Department of DefenseNavy
  10. Propagation Established through Autonomous Raman Lidar (PEARL)

    SBC: SPECTRAL SCIENCES, INC            Topic: N19AT015

    Accurate characterization of and propagation modeling through the Marine Boundary Layer is critical for maximizing Electro-Magnetic (EM) systems signal exploitation for naval asset offensive, defensive, and stealth operational performance. Strong temperature and humidity gradients in the Surface Boundary Layer lead to optical paths exhibiting Electro-Optic Infrared (EOIR) anomalous refraction and ...

    STTR Phase I 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government