You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Development of Multidisciplinary, Multi-Fidelity Analysis and Integration of Aerospace Vehicles

    SBC: AURORA FLIGHT SCIENCES CORPORATION            Topic: AF08BT03

    ABSTRACT: Aurora Flight Sciences, in collaboration with the Massachusetts Institute of Technology (MIT), proposes to further develop and test in realistic settings an innovative method for representing and managing multidisciplinary design information from a wide range of analysis tools. The practical implication resulting from this novel approach is a mathematical framework to confidently determ ...

    STTR Phase II 2010 Department of DefenseAir Force
  2. Reduced-Order High-Fidelity Models for Signature Propagation/WAVE

    SBC: AVID LLC            Topic: A07T028

    We propose to develop variable fidelity acoustic propagation models and combine them with GIS, optimization, and visualization software in order to create site-specific real-time decision aid tools for optimal sensor placement. High fidelity finite-differ

    STTR Phase II 2010 Department of DefenseArmy
  3. Demonstrated Environment/Harware Cooperation for Expanded Riverine Coverage

    SBC: BARRON ASSOCIATES, INC.            Topic: N10AT024

    The Barron Associates/Virginia Tech team believes that intelligent use of ambient riverine environmental factors together with novel drifter design and low-energy articulation is the key to enabling large non-overlapping river coverage. The proposed phase I research program focuses on (1) identifying key river characteristics which may be leveraged by riverine drifters, (2) fabricating a novel riv ...

    STTR Phase I 2010 Department of DefenseNavy
  4. MEMS based thermopile infrared detector array for chemical and biological sensing

    SBC: BFE Acquisition Sub II, LLC            Topic: A10AT004

    Thermopile arrays manufactured using integrated process compatible materials and micro-machining will provide high performance with low manufacturing cost. Black Forest Engineering (BFE) teamed with Case Western Reserve University will design thermopiles using silicon based semiconductors and compare performance. Low cost thermopiles, differentially coupled with advanced BFE CMOS readout, will pr ...

    STTR Phase I 2010 Department of DefenseArmy
  5. Fusion of a Real-time Analytical Model with Facility Control Systems

    SBC: STREAMLINE AUTOMATION LLC            Topic: AF09BT16

    AEDC personnel have developed and demonstrated the effectiveness of coupling a control volume model with a wind tunnel control system. The performance of the model was hampered because parameters of the model were assumed to be constant, when they are likely variables. A method for using facility data to determine functional relationships defining these parameters would allow them to vary during ...

    STTR Phase I 2010 Department of DefenseAir Force
  6. Functionalized Single Walled Carbon Nanotubes for High Performance Composites

    SBC: Carbon Solutions Inc            Topic: N06T031

    New material systems are required as a result of advanced performance criteria for the next generation destroyer program and other Navy ships. As a part of these requirements there is high demand for high strength structural composites. The objective of the STTR Phase II project is to develop high strength and light weight structural composites utilizing functionalized single-walled carbon nanotub ...

    STTR Phase II 2010 Department of DefenseNavy
  7. Advanced Real Time Battery Monitoring and Management System

    SBC: SPECTRAL LABS INCORPORATED            Topic: N10AT013

    Although many off-the-shelf and semi-custom Battery Management Systems (BMS) are available, the Navy recognizes with this STTR Topic, and recent history illustrates, that a safety system with the required reliability and performance for mission critical applications has not been demonstrated. This proposal will detail the Spectral Labs Incorporated (SLI) and University of California, Davis (UCD) t ...

    STTR Phase I 2010 Department of DefenseNavy
  8. Advanced Mediator Architectures for Efficient Electron Transfer in Enzymatic Fuel Cell Electrodes

    SBC: CFD RESEARCH CORPORATION            Topic: AF09BT03

    Our objective is to develop advanced mediator architectures for efficient electron transfer in enzymatic fuel cells (EFCs) for low power systems. The proposed EFC will leverage ongoing research at both CFDRC and Michigan State University to provide a fully-integrated lightweight, low-cost, manufacturable, and renewable power supply, for various military and civilian applications. EFC systems offer ...

    STTR Phase I 2010 Department of DefenseAir Force
  9. An Automated, High Throughput, Filter-Free Pathogen Preconcentrator

    SBC: CFD RESEARCH CORPORATION            Topic: A10AT016

    Accurate real-time waterborne pathogen detection is of paramount importance to security of U.S. military forces and installations. Fieldable high-throughput pathogen concentration is a critical analytical need for enhanced detection performance. Existing concentration methods are time-consuming, bulky, labor-intensive, power- and reagent-hungry, and consequently ill-suited for battlefield deployme ...

    STTR Phase I 2010 Department of DefenseArmy
  10. Multi Junction Solar cells for Satellite

    SBC: CFD RESEARCH CORPORATION            Topic: MDA09T005

    Higher efficiency solar cells are needed to reduce mass, volume, and cost of DoD space missions. However, to achieve higher efficiency and radiation hardness of the best to date multi-junction photovoltaic (PV) devices, several challenges must be addressed. This project aims to develop: 1) Quantum Well (QW)-based multi-junction cell that exhibits enhanced efficiency, and 2) Radiation-hardened PV c ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government