You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Radio Frequency (RF) Filter Tuning Element

    SBC: MAXENTRIC TECHNOLOGIES LLC            Topic: AF18AT015

    To meet the requirements of the AF18A-T015 solicitation, MaXentric and University of California San Diego are proposing the development of a low loss, high linearity capacitor. The tunable capacitor target is a compact integrated design, capable of a tuning range up to 4:1, with a minimum Q of 80 at 4 GHz, and handling up to 20W CW. During phase I, UCSD studied a novel varactor structure to improv ...

    STTR Phase II 2019 Department of DefenseAir Force
  2. Rapid Discovery of Evasive Satellite Behaviors

    SBC: DATA FUSION & NEURAL NETWORKS, LLC            Topic: AF17CT02

    The problem addressed in this effort is to automatically learn historical ephemeris space catalog time, position, and velocity entity track update error uncertainties (i.e., without track error covariances) and to automatically (e.g., without expert event labeling) produce: – unmodeled non-gravitational space catalog update flags – abnormal unmodeled catalog update flags with abnorma ...

    STTR Phase II 2019 Department of DefenseAir Force
  3. RAPID RECONSTITUTION FOR GROUND-BASED OPTICAL SSA CAPABILITY FOR GEO, HEO AND MEO

    SBC: J.T. McGraw and Associates, LLC            Topic: AF16AT05

    Commercially-derived telescope systems, consisting mostly of commercially available components assembled to optimally meet space surveillance goals, stand ready to temporarily replace, supplement and/or augment existing optical surveillance systems. In t...

    STTR Phase I 2016 Department of DefenseAir Force
  4. Realistic State and Measurement Error Uncertainty Computation and Propagation for Space Surveillance and Reconnaissance

    SBC: NUMERICA CORPORATION            Topic: AF09BT11

    Space surveillance is the component of space situational awareness focused on the detection of resident space objects (RSOs) and the use of multisource data to track and identify space objects. While the propagation of the states of RSOs has been investigated extensively over the last fifty years, the correct propagation of their covariance or the more general (non-Gaussian) probability distribut ...

    STTR Phase I 2010 Department of DefenseAir Force
  5. Real-time Location of Targets in Cluttered Environments

    SBC: MATHEMATICAL SYSTEMS & SOLUTIONS, INC.            Topic: AF12BT05

    ABSTRACT: We propose development of an efficient physics-based computational capability for real-time radar location of targets in cluttered environments. Our effort will focus, in particular, on air traffic targets in static natural environments that include dynamic effects such as spinning wind turbines. The proposed methodology models radar signal scattering in cluttered environments on t ...

    STTR Phase I 2013 Department of DefenseAir Force
  6. Real-Time Stress Biomarker Sensor

    SBC: CORNERSTONE RESEARCH GROUP INC            Topic: AF18CT001

    Research is currently identifying new biochemical markers to help monitor cognition and stress in the human body and enhance human performance. Traditional biometric markers like heart rate, temperature, oxygen partial pressure, blood glucose, electrolyte concentration, and others have been correlated with cognition and stress states. However, the correlation is indirect. Molecular biomarkers with ...

    STTR Phase I 2019 Department of DefenseAir Force
  7. Reconfigurable / cognitive optical communications

    SBC: VULCAN WIRELESS, INC.            Topic: AF18AT010

    This proposal will outline a bi-directional software defined Free Space Optics (FSO) laser communications testbed with flexible optical elements and reprogrammable waveform and signal processing elements. Vulcan Wireless Inc. currently manufacturers a 1550nm, eye safe, software defined Laser Communications Testbed MD-LC-1 and will use this as a basis for the Phase 1 effort. We will also be teaming ...

    STTR Phase I 2019 Department of DefenseAir Force
  8. Regional Radio Frequency Attenuation and Interference Monitor (RF-AIM)

    SBC: Silvus Technologies, Inc.            Topic: AF18BT005

    Silvus Technologies and the University of California Los Angeles propose a system design and a rapid development path for the Regional Radio Frequency Attenuation and Interference Monitor, or ‘RF-AIM’. RF-AIM is intended to provide continuous wide area awareness of RF spectrum availability in the presence of arbitrary interference and attenuation from natural or man-made causes. The t ...

    STTR Phase I 2019 Department of DefenseAir Force
  9. Resilient Directional Mesh Enhanced Tactical Airborne Networks

    SBC: FIRST RF CORPORATION            Topic: AF17BT003

    FIRST RF will lead the Phase II effort and will leverage the system architecture of the MAINLINE system and integrate multifunctional SiGe integrated circuits (ICs) developed by The University of California San Diego under the supervision of Prof. Gabriel Rebeiz. The SiGe devices developed during the Phase II effort will significantly reduce the power requirements of the MAINLINE system allowing f ...

    STTR Phase II 2019 Department of DefenseAir Force
  10. Retrofittable and Transparent Super-Insulator for Single-Pane Windows

    SBC: NANOSD, INC.            Topic: DEFOA0001429

    NanoSD, Inc. with its partners will develop a transparent, nanostructured thermally insulating film that can be applied to existing single-pane windows to reduce heat loss. To produce the nanostructured film, the team will create hollow ceramic or polymer nanobubbles and consolidate them into a dense lattice structure using heat and compression. Because it is mostly air, the resulting nanobubble s ...

    STTR Phase II 2016 Department of EnergyARPA-E
US Flag An Official Website of the United States Government