You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Multiphysics Modeling of Dynamic Combustion Processes Using Pareto-Efficient Combustion Framework

    SBC: STREAMLINE NUMERICS, INC.            Topic: AF18BT010

    The objective is to develop zonal multi-physics capability for turbulent combustion simulations. The foundation of the proposed work is a novel Pareto-Efficient Combustion (PEC) framework for fidelity-adaptive combustion modeling. The PEC model utilizes a combustion submodel assignment, combining the low-cost flamelet-based models with the more expensive finite rate chemistry models where necessar ...

    STTR Phase I 2019 Department of DefenseAir Force
  2. Resilient Directional Mesh Enhanced Tactical Airborne Networks

    SBC: FIRST RF CORPORATION            Topic: AF17BT003

    In this Phase II effort, FIRST RF, partnered with UCSD, will demonstrate array technology enabling highly directive multi-beam TCDL communications using phased arrays. The system expands upon prior SBIR development programs by enabling additional simultaneous full duplex data links by utilizing a novel array topology and beam forming technology allowing for the maximized SWaP solution for the disa ...

    STTR Phase I 2018 Department of DefenseAir Force
  3. W-Band RF Instrumentation

    SBC: SRICO INC            Topic: A18BT002

    W-band millimeter waves have a number of important applications, including directed energy and, more recently, 5G FR2 network development. Reliable measurements of electric fields in the W-Band, while critical to the development of these applications, have proven challenging. This proposal addresses the development of an accurate, traceable, cost effective W-band RF field strength detector. The so ...

    STTR Phase I 2019 Department of DefenseArmy
  4. Information and Decision Recommender

    SBC: SECURBORATION, INC.            Topic: N14AT024

    A general framework for course of action (COA) recommender systems consists of four primary functional areas : (1) mapping human entered COA into formalized, machine readable knowledge representation; (2) deconstructing COA decision models into relevant features or variables of interest; (3) gathering and routing intelligence related to those features to specific warfighters evaluating COA; and (4 ...

    STTR Phase I 2014 Department of DefenseNavy
  5. NEUTRON: Network Enforcement Using TRansctiONs

    SBC: SMART INFORMATION FLOW TECHNOLOGIES LLC            Topic: AF17BT004

    SIFT proposes Network Enforcement Using TRansactONs (NEUTRON) a dynamic fine-grained network enforcement policy design that captures network dependencies.NEUTRON closes the knowledge gap between mission needs and observed network traffic to increase mission network awareness. Then using that knowledge develops a revolutionary security enforcement policy based on network transactions.It reduces the ...

    STTR Phase I 2018 Department of DefenseAir Force
  6. Sun-Tracking Millimeter Wave Radiometer

    SBC: ATMOSPHERIC & SPACE TECHNOLOGY RESEARCH ASSOCIATES LLC            Topic: AF17CT01

    The Air Force is seeking solutions for a sun-tracking millimeter wave radiometer to measure atmospheric attenuation over a high dynamic range. The V- and W- bands have rarely been used for space communications and telemetry applications, but rapidly increasing government and commercial bandwidth needs will require future solutions within these bands. Our team, comprised of experienced scientists, ...

    STTR Phase I 2018 Department of DefenseAir Force
  7. Pantograph: Secure, Cross-domain Object Models

    SBC: ATC-NY INC            Topic: AF13AT08

    ABSTRACT: Most cross-domain information flows require some human intervention to ensure that the requirements for releasability are met. Such intervention is expensive and slow, and can form a bottleneck in operations. Unfortunately, fully automated sharing of information across security domain boundaries is also fraught with difficulties due to problems with identifying releasable information, a ...

    STTR Phase I 2014 Department of DefenseAir Force
  8. Rydberg-atom RF Sensors for Direction Finding and Geolocation

    SBC: COLDQUANTA, INC.            Topic: AF17AT028

    ColdQuanta is partnering with Dr. Zoya Popovic at the University of Colorado, Boulder, to develop a three-dimensional quantum-enhanced radio-frequency (RF) signal sensor and direction finder. Our approach combine Rydberg-atom-based RF electrometry and discrete lens arrays (DLAs) of planar antennas. The DLA will serve as a Fourier optic for an incident wave, and a Rydberg-atom RF electrometer will ...

    STTR Phase I 2018 Department of DefenseAir Force
  9. Volume Digital Holographic Wavefront Sensor

    SBC: NUTRONICS, INC.            Topic: AF18AT006

    Nutronics, Inc. and Montana State University propose to develop and evaluate computational methods for a Volume Digital Holographic Wavefront Sensor (VDHWFS).VDHWFS based imaging offers the potential to provide the equivalent of wide field of view adaptive optics (AO) compensated imaging, but without the added complexity of AO components and hardware.Recent result for coherent imaging developed by ...

    STTR Phase I 2018 Department of DefenseAir Force
  10. Suppression of Wind Turbine Clutter from Radar Data

    SBC: MATRIX RESEARCH INC            Topic: AF12BT05

    ABSTRACT: It is well known that wind turbine clutter (WTC) presents a significant challenge to detecting targets in civilian and military applications. The large radar cross section (RCS) of wind turbines, combined with their significant range of Doppler spread, make traditional clutter mitigation techniques effectively useless. The objective of this Phase I effort is to develop a physically con ...

    STTR Phase I 2013 Department of DefenseAir Force
US Flag An Official Website of the United States Government