You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Development of a Computational Method for Prediction of After-Burning Effect

    SBC: BUSA Engineering Consulting            Topic: N10AT002

    This proposal is being submitted in response to the solicitation topic N10A-T002 (Development of a Computational Method for Prediction of After Burning Effect) by BUSA Engineering Consulting (Dr. Jianghui Chao) in collaboration with University of Florida (PI: Prof. S. Balachandar). The overall objective of the proposed effort is to contribute to national defense and security by advancing the state ...

    STTR Phase I 2010 Department of DefenseNavy
  2. Theoretical Innovations in Combustion Stability Research: Integrated Analysis and Computation

    SBC: Kassoy Innovative Science Solutions            Topic: AF09BT38

    Quantitative predictions of reactive flow dynamics from large-scale simulations of Liquid Rocket Engines (LRE) appear to be model dependent. Relationships and coupling among the dominant mechanisms most responsible for destabilization are obscured by the complexities of the model and subtle consequences of inherent ad hoc approximations not supported by mathematical rationale. The reliability of ...

    STTR Phase I 2010 Department of DefenseAir Force
  3. Advanced Materials for the Design of Lightweight JP5/JP8/DS2 Fueled Engines for Unmanned Aerial Vehicles (UAVs)

    SBC: Northwest Uld, Inc.            Topic: N10AT001

    Northwest UAV Propulsion Systems proposes using our purpose built heavy fuel engine designed and built in the USA for small unmanned aerial systems in the tier 2 & 3 class. We will be adding a lightweight ceramic material set combined with FEA (Finite Element Analysis) and heavy fuel atomizer (IRAD Project) to create a lightweight engine for a SUAS or STUAS class UAVs. The Ceramic material set is ...

    STTR Phase I 2010 Department of DefenseNavy
  4. High Efficiency InAsSb / AlAsSb Quantum Dot Solar Cells

    SBC: Magnolia Solar Inc.            Topic: AF09BT20

    Magnolia Solar proposes to develop an innovative high efficiency single junction solar cell working with Prof. Diana Huffaker and her group and utilizing multi photon absorption in InAsSb/AlAsSb quantum dot solar cells. The proposed structure has unique qualities required by Intermediate band solar cell theory to achieve ultra high conversion efficiency. This system has a potential to achieve effi ...

    STTR Phase I 2010 Department of DefenseAir Force
  5. Multi-Photon Solar Cell

    SBC: Photonic Glass Corporation            Topic: AF09BT20

    This proposal addresses the attainment of conversion efficiency exceeding 35% in a single-junction solar cell. Non-absorption of long wavelength photons and thermallization of short wavelength photons accounts for the loss of over half of the incident energy in a single junction cell; however, a large fraction of this energy could be captured if the spectrum is first modified by an efficient phot ...

    STTR Phase I 2010 Department of DefenseAir Force
  6. Metal-blacks for plasmonic enhancement of solar-cell efficiency

    SBC: Physical Engineering Corporation            Topic: AF09BT39

    This Phase I STTR proposal will demonstrate nanostructured “metal-black” coatings to enhance absorption by thin film solar cells. The problem is that silicon has low absorption due to its indirect gap. The opportunity is that nano-scale metallic scattering centers increase the effective optical path length and enhance the solar electric-field strength in thin-film solar cells, leading to more ...

    STTR Phase I 2010 Department of DefenseAir Force
  7. Plasmonic MEMS Sensor Array

    SBC: Five Stones Research Corporation            Topic: A10AT002

    Sensor development researchers and engineers have perpetually sought novel methods to reduce sensor size and improve performance. Continued miniaturization of sensors through micromachining has enabled novel applications and introduced new paradigms for engineered systems to interact with the world. The challenge has always been to improve performance while continually reducing size. In the cur ...

    STTR Phase I 2010 Department of DefenseArmy
  8. A Rugged and Miniaturized Optical Coagulation Monitor

    SBC: SPECTRAL SCIENCES, INC            Topic: N10AT043

    A team consisting of Spectral Sciences Inc., Boston University, Boston University Medical School, Radcliffe Consulting and Brighton Consulting will collaborate to develop and validate a novel optical device for the monitoring and evaluation of blood coagulation. In this proposal we describe a novel optical blood coagulation monitoring instrument. The instrument has no moving parts, uses very small ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Innovative Approaches to Scalable and Multi-reference Coupled Cluster Methods

    SBC: SPECTRAL SCIENCES, INC            Topic: AF09BT40

    Increased computational speed and improved numerical algorithms have made computational chemistry an important tool in the development of new chemical compounds and processes. In particular, single-reference coupled cluster (CC) methods, such as CCSD(T), provide an excellent compromise between speed and accuracy in applications involving molecules near their equilibrium geometries, capturing most ...

    STTR Phase I 2010 Department of DefenseAir Force
  10. Full-Response TDDFT on Graphical Processing Units for Modeling Optical Response in Materials

    SBC: SPECTRAL SCIENCES, INC            Topic: AF09BT30

    Limited computational resources remain a serious obstacle to the application of quantum chemistry in problems of widespread importance, such as the design of new catalysts for use in fuel cells, or for modeling of material and optical properties of liquids and solids. Researchers have a considerable impetus to relieve this bottleneck, both by developing new and more effective algorithms and explor ...

    STTR Phase I 2010 Department of DefenseAir Force
US Flag An Official Website of the United States Government