You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Modeling Auditory Pattern Recognition and Learning with Gradient Frequency Neural Oscillator Networks

    SBC: OSCILLOSCAPE, LLC            Topic: AF09BT12

    This Small Business Technology Transfer research project addresses the perception and learning of complex sound patterns within complex auditory scenes. The objective is to model auditory signal processing, pattern recognition and learning in the human auditory system. Our novel approach simulates the nonlinear signal processing that has been observed in auditory physiology. By mimicking functiona ...

    STTR Phase I 2010 Department of DefenseAir Force
  2. Modeling Leadership Dynamics in Multinational Environments

    SBC: MacroCognition, LLC            Topic: ST092002

    We propose to develop a computational model of leadership designed to capture complex variables including cultural differences in leadership requirements along with task differences, primarily ill-defined goals, which pose leadership challenges. Rather than avoiding these kinds of complexity and developing a computational model that is unlikely to scale up, we believe there is more to be gained b ...

    STTR Phase I 2010 Department of DefenseDefense Advanced Research Projects Agency
  3. Modeling of Integrally Bladed Rotor (IBR) Blends

    SBC: SIMMETRIX, INC.            Topic: N13AT002

    Integrally bladed rotors (IBR), also called blisks, are becoming increasingly common in the compressor and fan sections of modern turbine engines. The integration of the blades and disks into a single part has the advantages of reduced part count, reduced weight, increased reliability, and increased performance. However, a drawback of this technology is that individual blades cannot be easily repl ...

    STTR Phase I 2013 Department of DefenseNavy
  4. Modeling Spin Test Using Location Specific Material Properties

    SBC: SCIENTIFIC FORMING TECHNOLOGIES CORPORATION            Topic: AF08T013

    Jet engine disk components are increasingly subjected to higher operating temperatures. To meet the demands of increasing thrust and higher operating temperatures, a newer generation of nickel based superalloys such as LSHR, Alloy 10, Rene104 and RR1000 are being processed with dual microstructure distributions. Fine grain, high strength, fatigue resistant bore properties are contrasted with co ...

    STTR Phase II 2010 Department of DefenseAir Force
  5. Modular Thermal Management System for Electronics Enclosures

    SBC: MAINSTREAM ENGINEERING CORP            Topic: N16AT014

    The heat load from Navy combat system electronics housed in Mission Critical Enclosures (MCEs) continues to increase. During Phase I, Mainstream designed and demonstrated a modular, scalable thermal management system (TMS) for existing and future MCE cabinets with triple the cooling capacity of the legacy TMS. In Phase II, Mainstream will transition the TMS to the Navy for retrofit and next-genera ...

    STTR Phase II 2018 Department of DefenseNavy
  6. Monolithic Beam-Combined Mid-Infrared Laser Array

    SBC: INTRABAND, LLC            Topic: N11AT011

    Monolithic surface-emitting (SE) semiconductor lasers hold promise for significant advantages over edge-emitting lasers in terms of both reliable operation, scaling the CW single-mode output powers into the multi-watt range, and manufacturing cost. Grating-coupled (GC) surface emitters offer a path to achieving single-spatial-mode, single-frequency CW operation, with the added advantage that relat ...

    STTR Phase II 2019 Department of DefenseNavy
  7. Monolithic Scalable Mid-Infrared Phase-Locked Laser Array

    SBC: INTRABAND, LLC            Topic: N11AT011

    The technical objectives of this proposal are: 1) Design a metal/semiconductor grating-based (i.e., substrate-emitting) Grating-Coupled Surface-Emitting Distributed Feedback Quantum Cascade Laser (GCSE-DFB QCL) emitting at 4.6 microns with high beam quality; and 2) Demonstrate a GCSE-DFB QCL emitting at 4.6 microns with single-lobe-beam operation and high beam quality, under CW operation. It is th ...

    STTR Phase II 2013 Department of DefenseNavy
  8. Multifunctional Integrated Sensing Cargo Pocket UAS

    SBC: ENDECTRA LLC            Topic: AF19AT016

    Palm-sized unmanned aerial systems (nano UAS) weighing tens of grams have evolved to the point where they are becoming useful to the warfighter. However, their small mass, fragility, and limited batteries still necessitate the use of emerging, low mass/power technologies to meet the full range of potential missions, including new autonomous flight control and collision avoidance strategies, struct ...

    STTR Phase I 2019 Department of DefenseAir Force
  9. Multifunctional Nanocomposite Structures Via Layer-by-Layer Assembly Process

    SBC: Nico Technologies Corp.            Topic: AF09BT36

    The realization of materials with record mechanical and electrical properties is of paramount importance to the Air Force and other branches of the US Armed Forces. Layer-by-layer (LBL) assembly is capable of producing nanocomposite materials with record properties surpassing those made by many traditional composite preparation techniques. However the process is time consuming and typically yiel ...

    STTR Phase I 2010 Department of DefenseAir Force
  10. Multi-Physics Analysis Tool for High-Energy Gas Lasers

    SBC: Material Flow Solutions, Inc.            Topic: MDA16T001

    Based on the results of our Phase I work, one significant barrier to optimizing battery performance lies in understanding the relationship between bulk solids and particle flow properties and the flow into the die. Our hypothesis: an increase in quality batteries production can be achieved if powder preparation process can be optimized and the die filling process controlled. We feel that control o ...

    STTR Phase II 2019 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government