You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Plasmonics for Energy Generation

    SBC: TECHNO-SCIENCES, LLC            Topic: AF09BT39

    Conversion of sunlight to chemical fuels by artificial photosynthesis has been a long-sought goal. The major goal of the proposed effort is to develop a novel fuel-generating (e.g., hydrogen) photolytic device, which consists of a semiconductor nanowire decorated with metal nanoparticles. The project targets a low-cost technology by fabricating and utilizing the nanowire-nanoparticle conjugate de ...

    STTR Phase I 2010 Department of DefenseAir Force
  2. Multi-scale Physics-Based Models for alpha-betaTitanium Alloys Accounting for Higher-Order Microstructure Statistics.

    SBC: MRL MATERIALS RESOURCES LLC            Topic: AF09BT29

    Modern military and civilian aircraft technologies are pushing the performance envelope through design and use of new advanced materials with superior property combinations. Aircraft powerplant manufacturers are facing intense competition to efficiently deliver ever increasing thrust, while meeting the highest standards of reliability and performance over an expanded service life. These performanc ...

    STTR Phase I 2010 Department of DefenseAir Force
  3. Metal-blacks for plasmonic enhancement of solar-cell efficiency

    SBC: Physical Engineering Corporation            Topic: AF09BT39

    This Phase I STTR proposal will demonstrate nanostructured “metal-black” coatings to enhance absorption by thin film solar cells. The problem is that silicon has low absorption due to its indirect gap. The opportunity is that nano-scale metallic scattering centers increase the effective optical path length and enhance the solar electric-field strength in thin-film solar cells, leading to more ...

    STTR Phase I 2010 Department of DefenseAir Force
  4. Innovative Earth Gravity Reformulation and Numerical Integration for Responsive SSA

    SBC: OMITRON, INC.            Topic: AF09BT02

    Currently, computation of the geopotential acceleration and its partial derivatives consumes a large portion of numerical integration time in special perturbations (SP) applications. The standard geopotential formulation is expressed as a spherical harmonic expansion in geocentric latitude, geocentric longitude, and radial distance. Recent research by Dr. Beylkin of the University of Colorado ha ...

    STTR Phase I 2010 Department of DefenseAir Force
  5. Modeling Leadership Dynamics in Multinational Environments

    SBC: MacroCognition, LLC            Topic: ST092002

    We propose to develop a computational model of leadership designed to capture complex variables including cultural differences in leadership requirements along with task differences, primarily ill-defined goals, which pose leadership challenges. Rather than avoiding these kinds of complexity and developing a computational model that is unlikely to scale up, we believe there is more to be gained b ...

    STTR Phase I 2010 Department of DefenseDefense Advanced Research Projects Agency
  6. Innovative Combat Simulation to Craft Tomorrow’s UAV Operational Doctrine

    SBC: John Tiller Software, Inc            Topic: AF09BT31

    This proposal is for the use of state-of-the-art computer wargames to be used in the research on the impact and optimal use of unmanned aerial vehicles (UAVs) in realistic combat scenarios. High fidelity, historically calibrated wargames ranging from sub-tactical ground-centric game engines through operational, strategic, air campaign, and naval-centric game engines will be used to address the fu ...

    STTR Phase I 2010 Department of DefenseAir Force
  7. Improving Software and Data Security in Industrial Control Systems

    SBC: Pikewerks Corporation            Topic: OSD09T003

    Industrial Control Systems (ICS) are critical elements in electrical, water, oil/gas, and manufacturing services involving supervisory control and data acquisition (SCADA), distributed control systems (DCS), and programmable logic controllers (PLCs). These systems allow operators to monitor sensor data and remotely control field devices. Initially, these devices were designed for closed-network or ...

    STTR Phase I 2010 Department of DefenseAir Force
  8. Demonstration of a JP-8 Powered Compact ECU

    SBC: MAINSTREAM ENGINEERING CORP            Topic: OSD09T002

    Military shelters currently use electrically driven Environmental Control Units (ECUs) to provide cooling for the air inside the shelter. The ECU is vapor compression cycle powered by a diesel generator, operating on JP-8 fuel. Other than fueling jet engines, the largest drain on U.S. military fuel supplies in current operations comes from running generators at forward operating bases. In hot cli ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Impact of Climate Change on Military Compounds in the Environment

    SBC: Environmental Quality Management            Topic: A09AT024

    This will facilitate the development of remedial approaches for existing facilities and assist in planning new facilities, logistics, and procedures to protect the environment without impairing critical mission functionality. The commercial application will include software distribution and updates.

    STTR Phase I 2010 Department of DefenseArmy
  10. VLSI Compatible Silicon-on-Insulator Plasmonic Components

    SBC: ITN ENERGY SYSTEMS, INC.            Topic: AF08BT18

    This Small Business Technology Transfer Phase I project will develop ultradense, low-power plasmonic integration components and devices for on-chip manipulation and processing of optical signals. Both passive and active components will be studied. Detailed performance predictions will be obtained through finite element modeling (FEM) of the harmonic Maxwell’s equations. The FEM provides detai ...

    STTR Phase I 2010 Department of DefenseAir Force
US Flag An Official Website of the United States Government