You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Lasers Based on Gas Filled Hollow-Core Photonic Crystal Fibers

    SBC: IRFLEX CORP            Topic: AF18BT015

    Current continuous wave (CW) and pulse mid-wave infrared (MWIR) lasers have design and performance limitations that constrain their usability in some critical Air Force applications. There is an important need to create a new class of MWIR laser sources with less drawbacks and higher pulse energies and CW powers. The proposed work will demonstrate the technical feasibility of an innovative MWIR la ...

    STTR Phase I 2019 Department of DefenseAir Force
  2. Lasers Based on Gas or Liquid Filled Hollow-Core Photonic Crystal Fibers

    SBC: SA PHOTONICS, LLC            Topic: AF18BT015

    We propose a compact, monolithic, power scalable, hollow core fiber-gas laser emitting in the atmospheric transmission region in the mid-IR. The proposed optically pumped fiber-gas laser system is efficient, has a small footprint as well has a broad spectral coverage in the mid-IR. Due to the unique approach employed, the proposed technology allows generation of mid-IR output with varying pulse re ...

    STTR Phase I 2019 Department of DefenseAir Force
  3. Multiphysics Modeling of Dynamic Combustion Processes Using Pareto-Efficient Combustion Framework

    SBC: STREAMLINE NUMERICS, INC.            Topic: AF18BT010

    The objective is to develop zonal multi-physics capability for turbulent combustion simulations. The foundation of the proposed work is a novel Pareto-Efficient Combustion (PEC) framework for fidelity-adaptive combustion modeling. The PEC model utilizes a combustion submodel assignment, combining the low-cost flamelet-based models with the more expensive finite rate chemistry models where necessar ...

    STTR Phase I 2019 Department of DefenseAir Force
  4. Carbon Nanotube FET Modeling and RF Circuit Simulation

    SBC: ELECTRONICS OF THE FUTURE, INC.            Topic: AF18BT006

    The project will develop and validate a geometry scalable CNTFET compact model for HF circuit design and extract the model parameters from the measured characteristics of the fabricated devices. The ballistic and quasi-ballistic transport, quantum and parasitic effects will be accounted for the predicted performance will be compared to 130 nm RF Si-CMOS to determine the conditions for breaking eve ...

    STTR Phase I 2019 Department of DefenseAir Force
  5. Developing Software for Pharmacodynamics and Bioassay Studies

    SBC: TConneX Inc.            Topic: DHP16C001

    Thegoal is to develop asoftwaretool that implementsa novelapproach applicableto fitgeneral pharmacologic, toxicology, or other biomedical data, that mayexhibita non-monotonic dose-responserelationship for which thecurrent parametricmodels fail. Thesoftwareexplores dose-responserelationships using both monotonicand non-monotonicmodels,and estimates theassociated doseresponsecurves,which can further ...

    STTR Phase II 2019 Department of DefenseDefense Health Agency
  6. Cervical Spine Health Improvement Products

    SBC: SWITCHBOX INC            Topic: DHA18B001

    Most standard-of-care tools and techniques for evaluating neck disorders are subjective, unreliable, and do not provide actionable information for providers, payers, and organizations to deliver efficient and effective care. This lack of objective neck he

    STTR Phase I 2019 Department of DefenseDefense Health Agency
  7. Fast Response Heat Flux Sensors and Efficient Data Reduction Methodology for Hypersonic Wind Tunnels

    SBC: AHMIC AEROSPACE LLC            Topic: AF17AT001

    Accurate knowledge of heat flux is critical in assessing the design, performance, and survivability of hypersonic flight vehicles. Despite decades of research and testing, much is still unknown regarding hypersonic instabilities and transition mechanisms that define the state of the boundary layer. While the existence of these features is known, the ability to accurately measure them remains a cha ...

    STTR Phase II 2019 Department of DefenseAir Force
  8. Mission and Information Assurance through Cyber Atomics

    SBC: SECURBORATION, INC.            Topic: AF17BT004

    Cyber Risk Assessments for Threatened Environments (CRATE) is a system that produces actionable, mission-level alerts when anomalous behaviors indicative of cyber-attack are discovered within deployed mission-critical cyber-systems. CRATE is particularly relevant to deployment scenarios involving third-party infrastructure, such as deployment to a Platform as a Service (PaaS) provider or other clo ...

    STTR Phase II 2019 Department of DefenseAir Force
  9. Semi-Analytic Fresnel Propagation Simulation

    SBC: MZA ASSOCIATES CORPORATION            Topic: AF18BT004

    Wave-optics simulations are critical tools for analysis of laser directed energy systems. The primary method for conducting these simulations is to evaluate the Fresnel diffraction integral using the angular spectrum method based on the fast Fourier transform (FFT). While FFTs are considered computationally efficient, their use in the Fresnel integral results in difficult grid constraints includin ...

    STTR Phase I 2019 Department of DefenseAir Force
  10. Fiber-Coupled Hyperspectral Thermal LWIR Imaging Sensor Suite for Combustion System Diagnostics

    SBC: SPECTRAL ENERGIES LLC            Topic: AF17AT016

    The objective of the proposed Phase-II effort by Spectral Energies LLC is to design and develop a fiber-coupled hyperspectral thermal LWIR imaging sensor suite to provide reliable, accurate 2D surface temperature measurements with high flexibility in practical gas turbine engines and propulsion systems. During the phase-II efforts, our team will work with fiber manufacture on custom designing of a ...

    STTR Phase II 2019 Department of DefenseAir Force
US Flag An Official Website of the United States Government