You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. ADA Conformable Wearable Battery-Hybrid Electrical Energy Storage System: A Rechargeable, Safe and High Performance Energy Storage Solution

    SBC: ADA TECHNOLOGIES, INC.            Topic: A15AT010

    ADA Technologies, Inc. proposes to transition our previously developed BB-2590 Hybrid Electrical Energy Storage System (HEESS) architecture into a Conformable Wearable Battery format, or CWB-HEESS (Figure 1). We seek to satisfy a meaningful, Army Program Executive Office (PEO) Soldier need for a rechargeable, safe and high energy CWB. We anticipate the CWB-HEESS will have broad U.S. Dept. of Defen ...

    STTR Phase II 2018 Department of DefenseArmy
  2. On Demand Energy Activated Liquid Decontaminants and Cleaning Solutions

    SBC: TDA RESEARCH, INC.            Topic: A12AT005

    On-site activated decontaminants will revolutionize chemical and biological decon because the activated solution is produced on demand, without the limitations of traditional pre-made mixtures. TDAs system uses electrical activation to convert battery power into reactive chemicals that quickly destroy chemical and biological warfare agents. Prior to activation, the decontaminant mixture can be saf ...

    STTR Phase II 2018 Department of DefenseArmy
  3. Method for Locally Measuring Strength of a Polymer-Inorganic Interface During Cure and Aging

    SBC: METNA CO            Topic: A17AT016

    The NMR relaxometry instrument developed in Phase I project will be refined and thoroughly calibrated for nondestructive evaluation of the structure and properties of polymer-inorganic interfaces. The system design, operation conditions and data acquisition/analysis algorithms will be improved for precise and reliable evaluation of the structure and properties of the interfaces formed between dive ...

    STTR Phase II 2018 Department of DefenseArmy
  4. Power and Propulsion System Optimization

    SBC: CORNERSTONE RESEARCH GROUP INC            Topic: N18AT012

    Unmanned underwater vehicles (UUVs) are currently limited in the type of missions they can perform. Limited available power limits which sensors can be run or for how long, and also limits the duration and range of the mission. More efficient propulsion systems would increase the power available to the UUV payload. Improved power distribution systems and control systems would also increase the ava ...

    STTR Phase I 2018 Department of DefenseNavy
  5. New Integrated Total Design of Unmanned Underwater Vehicles (UUVs) Propulsion System Architecture for Higher Efficiency and Low Noise

    SBC: CONTINUOUS SOLUTIONS LLC            Topic: N18AT012

    In this proposal, a meta model-based scaling law will be used to represent each system component. A components meta model-based scaling law describes the tradeoffs between performance metrics for that component or subsystem as a function of its ratings in relation to the system. This greatly reduces the number of degrees of freedom for each component, and at the same time, retains the information ...

    STTR Phase I 2018 Department of DefenseNavy
  6. Advanced Ship-handling Simulators

    SBC: D'Angelo Technologies, LLC            Topic: N18AT014

    There is a need to create an automated, adaptive, real time coaching module that can integrate the Conning Officer Virtual Environment (COVE) along with the associated Intelligent Tutor System (COVE-ITS) and the Conning-Officer Ship Handling Assessment (COSA) together. By automating the evaluation process, Surface Warfare Officers (SWOs) will have the opportunity to use the COVE simulations more f ...

    STTR Phase I 2018 Department of DefenseNavy
  7. Quantifying Uncertainty in the Mechanical Performance of Additively Manufactured Parts Due to Material and Process Variation

    SBC: MRL MATERIALS RESOURCES LLC            Topic: N16AT004

    Additive manufacturing is an extremely customizable process; however, variations in the chosen build parameters can lead to drastic differences in part performance. The performance variation due to process parameters is still not well understood, and propagating all uncertainties from the various sources has been a challenge. Sources of AM parts’ performance variability include uncertainties in ...

    STTR Phase II 2018 Department of DefenseNavy
  8. Optimized High Performance Stainless Steel Powder for Selective Laser Melting Additive Manufacturing (AM)

    SBC: SHEPRA, INC.            Topic: N16AT007

    Stainless steel is a vital component of many air, land and sea systems that support the Navy warfighter. In particular, 17-4 precipitation hardened stainless steel, (17-4 PH SS) with its extrodinary combination of strength, ductility, high temperature performance and corrosion resistance plays an important role in supporting the warfighter. When processed conventionally, 17-4 PH SS typical exhibit ...

    STTR Phase II 2018 Department of DefenseNavy
  9. Medium Voltage Direct Current (MVDC) Fault Detection, Localization, and Isolation

    SBC: ISSAC Corp            Topic: N16AT009

    During the Phase II effort, the ISSAC Team will investigate several objectives and questions posed in Phase I efforts, in order to best develop a draft specification for NGES MVDC DLI systems. This includes exploring notional and conceptual architectures and discerning thresholds for DLI parameters; exploring individual and hybrid protection plan technologies to drive performance requirements for ...

    STTR Phase II 2018 Department of DefenseNavy
  10. Medium Voltage Direct Current (MVDC) Grounding System

    SBC: CONTINUOUS SOLUTIONS LLC            Topic: N16AT012

    During the Phase 1 effort, there were several achievements toward the design of grounding systems for MVDC architectures. For one, the common-mode equivalent circuit (CMEC) modeling approach that was derived at Purdue under ESRDC funding, was validated in a reduced-scale hardware setup at Purdue. The system studied consisted of a single generator, active rectifier, inverter, and propulsion machine ...

    STTR Phase II 2018 Department of DefenseNavy
US Flag An Official Website of the United States Government