You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Eye-safe Optically-Pumped Gas-filled Fiber Lasers

    SBC: Precision Photonics Corporation            Topic: ARMY08T021

    An eye-safe optically pumped laser based on a gas-filled hollow optical fiber will be demonstrated to lase at both near infrared (IR) and mid IR wavelengths. These lasers will be the first in a new class of IR lasers, based on the combination of hollow-f

    STTR Phase II 2010 Department of DefenseArmy
  2. Lithium-Ion Cell and Battery Life Modeling to Encompass Wider Life Parameters

    SBC: Quallion LLC            Topic: MDA08T008

    Quallion and the University of South Carolina propose to continue their modeling efforts to develop a more comprehensive LEO simulation model to encompass more varied satellite conditions to meet USG (United States Government) modeling needs.

    STTR Phase II 2010 Department of DefenseMissile Defense Agency
  3. Dynamic Physical/Data-Driven Models for System-Level Prognostics and Health Management

    SBC: QUALTECH SYSTEMS, INC.            Topic: N10AT009

    The proposed effort leverages the capabilities of data-driven and physics of failure (PoF) based prognostic techniques for electronic systems by combining them within a hybrid approach. Data-driven and PoF-based techniques both have shortcomings; combining them into a hybrid framework allows using their capabilities in a complementary fashion, and thereby providing a reliable way of prognostics an ...

    STTR Phase I 2010 Department of DefenseNavy
  4. High Efficiency Gain Media for Eye-Safer 1.55 µm Ultrafast Fiber Amplifiers

    SBC: Raydiance, Inc.            Topic: N10AT012

    Compelling applications of infrared ultrafast lasers—ranging from ship self defense and aircraft self defense, to medical and micromachining applications—have defined a critical performance point at about one millijoule per pulse from a reliable and robust portable laser system with high average power. Increasing amplifier efficiency is a critical need in order to reach high average powers nee ...

    STTR Phase I 2010 Department of DefenseNavy
  5. Advanced Compressor Technology for Ultrafast Fiber Lasers

    SBC: Raydiance, Inc.            Topic: NAVY07T009

    Ultrafast laser technology offers compelling capabilities for national defense, state-of-the-art health care, and the materials processing industry. The development of this technology into commercial form factor hardware has been limited mostly by the size, cost, complexity, and/or pulse energy limitations of current ultrafast laser systems. Optical fiber based ultrafast lasers have dramatically d ...

    STTR Phase II 2010 Department of DefenseNavy
  6. Refractory Metal Coating for Electromagnetic Launcher Rails

    SBC: TDA RESEARCH, INC.            Topic: N10AT025

    Electromagnetic launchers or rail guns are a key component of the Navy’s all-electric ship of the future, but they lack the durability required for repeated firings. TDA Research and the University of Nevada, Reno (UNR) are developing a tough, durable and conductive refractory metal coating that will protect the copper alloy conductors (rails) from the extreme heat and wear conditions inside the ...

    STTR Phase I 2010 Department of DefenseNavy
  7. Improving Software and Data Security in SCADA Systems

    SBC: REAL-TIME INNOVATIONS, INC.            Topic: OSD09T003

    To build a more intelligent grid, electric utilities must now construct a new architecture from connected, standard technologies. This smart architecture will connect SCADA systems so they can interact more efficiently. It will employ distributed monitoring and power-use optimization. It will also connect SCADA networks to corporate networks, wireless systems, and remote monitoring stations. ...

    STTR Phase I 2010 Department of Defense
  8. Characterization of Diffusive Noise Fields Using Ambient Noise Interferometry, Spatial Gradients and Acoustic Bright Spots

    SBC: Rocky Mountain Geophysics, Llc            Topic: N10AT004

    We propose to conduct a feasibility study for utilizing broadband sampling of the diffusive noise field in a dynamic environment. In ambient noise studies, the ability to resolve a wavefield is proportional to its time-bandwidth (TB) product. In a dynamic environment such as in the atmosphere or ocean, the nature of the impinging wave field is changing rapidly so that only short time segments can ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Novel protocol for Quantum Key Distribution

    SBC: SA PHOTONICS, LLC            Topic: AF09BT21

    Quantum cryptography, and in particular Quantum Key Distribution (QKD) is a secure method to distribute a secret key between two distant authorized partners whose security is based on the laws of physics. Current public key cryptosystems have not been proven to be secure and are based on the computational complexity of evaluating one-way functions. These functions are easily evaluated, but extrem ...

    STTR Phase I 2010 Department of DefenseAir Force
  10. Multi-input Multi-output Synthetic Aperture Radar with Collocated Antennas

    SBC: SA PHOTONICS, LLC            Topic: A10AT005

    SA Photonics and the Georgia Tech Research Institute (GTRI) are please to propose the development of MIMO SAR/GMTI techniques. The approach is to leverage the extensive amount of research that has been conducted in an academic setting and to assess the feasibility of the transition of these techniques into system of practical interest.

    STTR Phase I 2010 Department of DefenseArmy
US Flag An Official Website of the United States Government