You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Broadband agile wavelength laser for chemical aerosol detection

    SBC: DBC Technology Corp.            Topic: A09AT020

    Chemical agents in aerosol form have been identified as a major threat, and there is now interest in applying the long wave infrared frequency agile laser sensor to detection of this important agent form. If successful, it would be possible to perform detection of chemical agent vapors and aerosols and biological aerosol agents with a single dual-use sensor. To accomplish this, it is critical to ...

    STTR Phase I 2010 Department of DefenseArmy
  2. Broadband agile wavelength laser for chemical aerosol detection

    SBC: DBC Technology Corp.            Topic: ARMY09T020

    The Phase I effort was successful in experimentally showing feasibility of a combined isotope transmitter that can be developed and demonstrated under the Phase II program. The initial experimental results give the window of gas mixtures for a stable discharge. Laser extraction tests were accomplished with C12/C13 mixtures to give guidance for further work to increase laser gain. For application ...

    STTR Phase II 2010 Department of DefenseArmy
  3. Broadband agile wavelength laser for chemical aerosol detection

    SBC: DBC Technology Corp.            Topic: A09AT020

    The Phase I effort was successful in experimentally showing feasibility of a combined isotope transmitter that can be developed and demonstrated under the Phase II program. The initial experimental results give the window of gas mixtures for a stable discharge. Laser extraction tests were accomplished with C12/C13 mixtures to give guidance for further work to increase laser gain. For application ...

    STTR Phase II 2010 Department of DefenseArmy
  4. Body-worn Wireless Neurophysiological Monitoring Network

    SBC: Cognionics, Inc.            Topic: N13AT021

    This project will develop a wireless, body-worn neurophysiological monitoring suite. The system comprises of multiple'patches'designed to cover the body for ECG, EEG and EMG acquisition along with auxiliary sensors for temperature and motion capture. The core of the Phase I project will focus on demonstrating the feasibility of the device for EEG and evoked applications due to the high t ...

    STTR Phase I 2013 Department of DefenseNavy
  5. Biomimetic Integrated Optical Sensor Systems

    SBC: Luminit LLC            Topic: AF12BT03

    ABSTRACT: To address the Air Force"s need for a novel advanced imaging sensor concept that samples all of the information in the radiation field, taking inspiration from biological systems, Luminit proposes to develop a new Biomimetic Integrated Optical Sensor (BIOS) system. The system will be based on the unique integration of a wide field-of-view (FOV) miniature staring multi-aperture compound ...

    STTR Phase I 2013 Department of DefenseAir Force
  6. Biologically-inspired integrated vision systems

    SBC: Tanner Research, Inc.            Topic: AF12BT03

    ABSTRACT: Tanner Research, Inc., in collaboration with University of Maryland, will determine feasibility and plan for development of technology based on insect visual sensing and processing, which will integrate three modes related to navigation and guidance: motion detection from imaging sensing; polarization sensing and processing to implement a celestial compass; and ocellar sensing and proce ...

    STTR Phase I 2013 Department of DefenseAir Force
  7. Biologically-inspired Integrated Vision System

    SBC: SPECTRAL IMAGING LABORATORY            Topic: AF12BT03

    ABSTRACT: The U.S. Air Force has a need to develop a new class of advanced, wide field of view (WFOV) imaging sensors that sample the radiation field in multiple modes: spectral, temporal, polarization, and detailed object shape. These multimodal sensors are to be deployed on high altitude drones to enhance their intelligence, surveillance, and reconnaissance (ISR) capabilities. Smaller versio ...

    STTR Phase I 2013 Department of DefenseAir Force
  8. Biojet Fuels from Nonedible Bio-oils and Cellulosic Biomass

    SBC: ENERGIA TECHNOLOGIES, INC.            Topic: N09T034

    The proposed program addresses the emerging needs for the Navy to have cost effective alternative liquid transportation biofuels. The main objectives are to produce bio-jet and bio-diesel fuels from cellulosic biomass and nonedible bio-oils and demonstrate that they have cost structure and product quality comparable to petroleum based fuels. Novel concepts in processing, reactor design and catalys ...

    STTR Phase II 2010 Department of DefenseNavy
  9. Autonomous Landing at Unprepared Sites for a Cargo Unmanned Air System

    SBC: Data Flux Systems Inc.            Topic: N10AT039

    We propose to design, develop, implement, simulate, and demonstrate an autonomous control and sensing system for the safe vertical landing of autonomous aerial cargo delivery system (ACDS). The landing site is expected to be unprepared mountain sides with slopes up to 15 degrees and rough terrain containing rocks and brush. We also plan to reduce the amount of ground equipment required to operate ...

    STTR Phase I 2010 Department of DefenseNavy
  10. Autonomous Landing at Unprepared Sites for a Cargo Unmanned Air System

    SBC: SYNETICS SYSTEMS ENGINEERING CORP.            Topic: N10AT039

    A rapid prototyping simulation for the Autonomous Rotorcraft Land & Take-Off (ARLTO) system will be developed to analyze and evolve requirements for the landing and take-off of a Rotary-wing Autonomous Air Vehicle (RAAV) from unprepared terrain. The simulation is based upon the Task-Pilot-Vehicle modeling system and features a UH-60 configured with a Sliding Mode Control (SCM) inner loop closure. ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government