You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Carbon Nanotube-Based Heater Coatings for Processing of Thermosetting and Thermoplastic Composites

    SBC: MAINSTREAM ENGINEERING CORP            Topic: N18BT031

    For this research program, Mainstream will collaborate with Colorado State University (CSU) to develop a nanostructured heater capable of curing aerospace grade composites out-of-autoclave (OOA). The use of autoclaves is the primary cost driver in composite manufacturing due to size limitations, long processing times, and inefficient energy usage. Therefore, the Navy is looking to develop a nanost ...

    STTR Phase I 2019 Department of DefenseNavy
  2. Innovations in Designing Damage Tolerant Rotorcraft Components by Interface Tailoring

    SBC: HARP ENGINEERING LLC            Topic: N19AT003

    The performance of a composite material is heavily influenced by the strength and toughness of the interlaminar region, which is the resin rich area between the plies of a fiber reinforced composite. The interlaminar region generally provides a direct path for crack propagation since no continuous reinforcement is present and is often the cause of failure in materials subjected to cyclic loading s ...

    STTR Phase I 2019 Department of DefenseNavy
  3. Process to Mitigate Catastrophic Optical Damage to Quantum Cascade Lasers

    SBC: IRGLARE LLC            Topic: N19AT004

    The development of a catastrophic optical damage model for quantum cascade lasers describing instantaneous laser damage at high optical power levels is proposed. The model will be validated by comparison to experimental data. Based on obtained results, changes to laser design and laser fabrication resulting in an increased damage threshold will be implemented. The work will ultimately result into ...

    STTR Phase I 2019 Department of DefenseNavy
  4. Homopolar AC Electric Machines for Naval Applications

    SBC: McCoy Consulting, LLC            Topic: N19AT007

    The objective of this proposed effort is to increase the power and torque density of rotating electric machinery for Naval applications by up to 50%. This aggressive goal will be achieved by developing the novel homopolar AC machine (HAM) topology. This relatively un-studied topology relies on solenoidal field and armature coils, making manufacturing simpler than traditional machines. The HAM elim ...

    STTR Phase I 2019 Department of DefenseNavy
  5. Power-Dense Electrostatic Rotating Machines

    SBC: C MOTIVE TECHNOLOGIES INC            Topic: N19AT007

    Next-generation naval ships will require electric machinery with at least 50% greater power density than is available today. Such machines must deliver up to 10’s of MW at 100-200 rpm with very high energy efficiency, extremely low noise signature, and reasonable cost. Electrostatic machine technology is often overlooked but is perfectly suited to achieving these goals. C-Motive Technologies pro ...

    STTR Phase I 2019 Department of DefenseNavy
  6. GECCO: Gecko-gripper for EOD with Cavitation Cleaning Operation

    SBC: VALOR ROBOTICS, LLC            Topic: N19AT011

    The objective of the Phase I proposal is to investigate the application of controlled cavitation cleaning technology in conjunction with gecko-inspired mechanical adhesion and soft elastomeric applicators for use in non-intrusive EOD operations. This investigation requires the proof-of-concept testing and validation of a controlled cavitation cleaning mechanism, and a soft robotic gecko-inspired m ...

    STTR Phase I 2019 Department of DefenseNavy
  7. Power Dense Turbo-Compression Cooling Driven by Waste Heat

    SBC: MANTEL TECHNOLOGIES, INC.            Topic: N19AT013

    The U.S. Navy seeks methods to improve the fuel economy of marine diesel engines through utilization of waste heat. Low temperature engine jacket water, lubrication oil, and aftercooler air are largely untapped streams of thermal energy on these ships, but their utilization circumvents many operation challenges associated with exhaust gases. For example, variable and high exhaust gas temperatures ...

    STTR Phase I 2019 Department of DefenseNavy
  8. High Speed Spinning Scroll Expander (HiSSSE)- Organic Rankine Cycle for Increased Naval Ship Power Density and Fuel Efficiency

    SBC: Air Squared, Inc.            Topic: N19AT013

    Waste heat from Naval diesel generators provides significant opportunity to introduce organic Rankine cycles (ORC) to increase their fuel efficiency. The objective of the proposed effort is to design and demonstrate a high-speed, spinning scroll expander (HiSSSE) ORC as a power dense waste heat recovery system for diesel generators on ships. The system will leverage Air Squared’s spinning scroll ...

    STTR Phase I 2019 Department of DefenseNavy
  9. Compact Waste Heat Recovery Power Generation System

    SBC: SPECTRAL ENERGIES LLC            Topic: N19AT013

    The STTR topic N19A-T013 seeks innovative technology to improve the power density and efficiency of propulsion and power generation devices. To address this challenge, Spectral Energies in collaboration with its academic partner Dr. Rory Roberts at Wright State University proposes to develop a compact heat recovery system based on a supercritical CO2 based Rankin Cycle. At the end of the STTR prog ...

    STTR Phase I 2019 Department of DefenseNavy
  10. Quench Monitoring and Control System for High-Temperature Superconducting Coils

    SBC: ADVANCED CONDUCTOR TECHNOLOGIES LLC            Topic: N19AT016

    The Navy has been developing superconducting systems, based on high-temperature superconductors (HTS), for future use on Navy ships. One of the challenges associated with superconducting magnets is the possibility of a quench, which is an event where a local hot spot develops within the superconductor that quickly spreads throughout the device, driving it into its normal and dissipative state. Sen ...

    STTR Phase I 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government