You are here
Award Data
The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.
Download all SBIR.gov award data either with award abstracts (290MB)
or without award abstracts (65MB).
A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.
The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.
-
Ultradense Plasmonic Integrated Devices and Circuits
SBC: ULTIMARA INC Topic: AF08BT18We propose to develop ultradense plasmonic integrated devices and circuits for optical interconnect compatible with the electronic circuitry. In our proposal, we will employ engineered metallic nanostructures that combine energy concentration by plasmonic lenses and retardation-based plasmonic resonances to even further boost the efficiency of materials exhibiting optical nonlinearity. These plas ...
STTR Phase I 2010 Department of DefenseAir Force -
Plasmonic Sensor Array
SBC: ULTIMARA INC Topic: A10AT002The goal of this program is to develop devices that can detect small electric fields over large frequency ranges while being compact and power efficient. We propose an electro-optic resonant plasmon that enhances the electro-optic phase shift in a small volume (
STTR Phase I 2010 Department of DefenseArmy -
Theoretical Innovations in Combining Analytical, Experimental, and Computational Combustion Stability Analysis
SBC: HYPERCOMP INC Topic: AF09BT38Combustion stability is an important consideration in the design of liquid rocket engines. While fundamental modes of unstable operation in simple geometries are easily identified using analytical methods, recent times have seen these methods greatly expand in scope, applied in semi-numerical format to increasingly complex geometries and flow situations. Much remains to be explored in understandin ...
STTR Phase I 2010 Department of DefenseAir Force -
Advanced Computational Methods for Study of Electromagnetic Compatibility
SBC: HYPERCOMP INC Topic: AF09BT13The leakage of electromagnetic (EM) energy into air vehicles, and particularly into ordnance, poses a hazard that requires careful evaluation. Under current guidelines, such evaluations are primarily to be carried out through extensive testing of items under possible field conditions, a process that can be both time-consuming and costly. The scope of this STTR Phase I activity is to implement a h ...
STTR Phase I 2010 Department of DefenseAir Force -
High-order modeling of applied multi-physics phenomena
SBC: HYPERCOMP INC Topic: AF08T023The gap between research in numerical methods and popular commercial solvers in CFD and related areas has been gradually widening in the recent past, particularly in the realm of high order accurate algorithms. At HyPerComp we are advancing a suite of high order codes based on the discontinuous Galerkin (DG) technique that can be used in electromagnetics, fluid mechanics, MHD and radiative heat tr ...
STTR Phase II 2010 Department of DefenseAir Force -
Efficient Multi-Scale Radiation Transport Modeling
SBC: HYPERCOMP INC Topic: AF08T020Radiative heat transfer is a dominant mode of heat transfer in combustion and propulsion systems as well as for hypersonic flow encountered during planetary entry. Solution of the Radiative Transfer Equation (RTE), which is an integro-differential equation, places stringent requirements on the computational resources as: (a) the radiation depends both on spatial and angular dimensions, (b) radiati ...
STTR Phase II 2010 Department of DefenseAir Force -
Software Defined Multi-Channel Radar Receivers for X-band Radars
SBC: MAXENTRIC TECHNOLOGIES LLC Topic: MDA09T003The United States Missile Defense Agency (MDA) is searching for a software-defined multi-channel radar receiver that would provide improved performance and added flexibility over currently deployed radar systems. In response, MaXentric is proposing a system codenamed MASR (Manycore Adaptive Software Radar). The MASR system is composed of a hierarchy of X-band front-ends, high-speed digitizers, F ...
STTR Phase I 2010 Department of DefenseMissile Defense Agency -
Low Cost, High Performance Transmit/Receive Integrated Circuits on a single chip
SBC: ANOKIWAVE INC Topic: MDA09T004The objective of this Phase I proposal is to demonstrate, through a rigorous design and modeling, the feasibility of a single chip Transmit/Receive Integrated Circuits (TRIC) with on-chip controller and compensation networks for next generation X-band radar systems. TRIC will include RF, analog and digital circuits on a single chip. TRIC functionality would include Frequency-modulated Continuous ...
STTR Phase I 2010 Department of DefenseMissile Defense Agency -
Adaptive Fleet Synthetic Scenario Research
SBC: SONALYSTS INC Topic: N10AT044Together with our research institution partner, the University of Central Florida (UCF) Institute for Simulation and Training (IST), Sonalysts is pleased to submit this proposal to investigate the feasibility of creating a Service Oriented Architecture (SOA) framework for correlation and fusion algorithms that drive scenario generation across many information domains (communication, imagery, track ...
STTR Phase I 2010 Department of DefenseNavy -
Advanced Mediator Architectures for Efficient Electron Transfer in Enzymatic Fuel Cell Electrodes
SBC: CFD RESEARCH CORPORATION Topic: AF09BT03Our objective is to develop advanced mediator architectures for efficient electron transfer in enzymatic fuel cells (EFCs) for low power systems. The proposed EFC will leverage ongoing research at both CFDRC and Michigan State University to provide a fully-integrated lightweight, low-cost, manufacturable, and renewable power supply, for various military and civilian applications. EFC systems offer ...
STTR Phase I 2010 Department of DefenseAir Force