You are here
Award Data
The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.
Download all SBIR.gov award data either with award abstracts (290MB)
or without award abstracts (65MB).
A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.
The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.
-
High-order modeling of applied multi-physics phenomena
SBC: HYPERCOMP INC Topic: AF08T023The gap between research in numerical methods and popular commercial solvers in CFD and related areas has been gradually widening in the recent past, particularly in the realm of high order accurate algorithms. At HyPerComp we are advancing a suite of high order codes based on the discontinuous Galerkin (DG) technique that can be used in electromagnetics, fluid mechanics, MHD and radiative heat tr ...
STTR Phase II 2010 Department of DefenseAir Force -
Efficient Multi-Scale Radiation Transport Modeling
SBC: HYPERCOMP INC Topic: AF08T020Radiative heat transfer is a dominant mode of heat transfer in combustion and propulsion systems as well as for hypersonic flow encountered during planetary entry. Solution of the Radiative Transfer Equation (RTE), which is an integro-differential equation, places stringent requirements on the computational resources as: (a) the radiation depends both on spatial and angular dimensions, (b) radiati ...
STTR Phase II 2010 Department of DefenseAir Force -
Ocean Energy Extraction for Sensor Applications
SBC: TREX ENTERPRISES CORPORATION Topic: N08T021Remote ocean instrumentation often relies on floating buoys with sensors to acquire time series measurements such as ambient noise, acoustic tracking or communications. The operating lifetime of small remote buoys is limited by batteries (often to 12 - 24 hrs), and recharging is so inconvenient or impractical that many small sonobuoys are designed to scuttle themselves after about a day. The assoc ...
STTR Phase II 2010 Department of DefenseNavy -
Software Defined Multi-Channel Radar Receivers for X-band Radars
SBC: MAXENTRIC TECHNOLOGIES LLC Topic: MDA09T003The United States Missile Defense Agency (MDA) is searching for a software-defined multi-channel radar receiver that would provide improved performance and added flexibility over currently deployed radar systems. In response, MaXentric is proposing a system codenamed MASR (Manycore Adaptive Software Radar). The MASR system is composed of a hierarchy of X-band front-ends, high-speed digitizers, F ...
STTR Phase I 2010 Department of DefenseMissile Defense Agency -
Low Cost, High Performance Transmit/Receive Integrated Circuits on a single chip
SBC: ANOKIWAVE INC Topic: MDA09T004The objective of this Phase I proposal is to demonstrate, through a rigorous design and modeling, the feasibility of a single chip Transmit/Receive Integrated Circuits (TRIC) with on-chip controller and compensation networks for next generation X-band radar systems. TRIC will include RF, analog and digital circuits on a single chip. TRIC functionality would include Frequency-modulated Continuous ...
STTR Phase I 2010 Department of DefenseMissile Defense Agency -
Adaptive Fleet Synthetic Scenario Research
SBC: SONALYSTS INC Topic: N10AT044Together with our research institution partner, the University of Central Florida (UCF) Institute for Simulation and Training (IST), Sonalysts is pleased to submit this proposal to investigate the feasibility of creating a Service Oriented Architecture (SOA) framework for correlation and fusion algorithms that drive scenario generation across many information domains (communication, imagery, track ...
STTR Phase I 2010 Department of DefenseNavy -
Advanced Mediator Architectures for Efficient Electron Transfer in Enzymatic Fuel Cell Electrodes
SBC: CFD RESEARCH CORPORATION Topic: AF09BT03Our objective is to develop advanced mediator architectures for efficient electron transfer in enzymatic fuel cells (EFCs) for low power systems. The proposed EFC will leverage ongoing research at both CFDRC and Michigan State University to provide a fully-integrated lightweight, low-cost, manufacturable, and renewable power supply, for various military and civilian applications. EFC systems offer ...
STTR Phase I 2010 Department of DefenseAir Force -
An Automated, High Throughput, Filter-Free Pathogen Preconcentrator
SBC: CFD RESEARCH CORPORATION Topic: A10AT016Accurate real-time waterborne pathogen detection is of paramount importance to security of U.S. military forces and installations. Fieldable high-throughput pathogen concentration is a critical analytical need for enhanced detection performance. Existing concentration methods are time-consuming, bulky, labor-intensive, power- and reagent-hungry, and consequently ill-suited for battlefield deployme ...
STTR Phase I 2010 Department of DefenseArmy -
Multi Junction Solar cells for Satellite
SBC: CFD RESEARCH CORPORATION Topic: MDA09T005Higher efficiency solar cells are needed to reduce mass, volume, and cost of DoD space missions. However, to achieve higher efficiency and radiation hardness of the best to date multi-junction photovoltaic (PV) devices, several challenges must be addressed. This project aims to develop: 1) Quantum Well (QW)-based multi-junction cell that exhibits enhanced efficiency, and 2) Radiation-hardened PV c ...
STTR Phase I 2010 Department of DefenseMissile Defense Agency -
Development of Surface Reaction Mechanism for C-SiC-SiO2-Rubber Composite Oxidation in Extreme Oxidizing Condition
SBC: CFD RESEARCH CORPORATION Topic: N10AT005The purpose of this STTR is to develop comprehensive detailed kinetics for oxidation of C-SiC-SiO2-rubber in extreme oxidizing environment. This material is used as a coating on the outer surface of Navy weapon systems. In order to predict the fate of this material under extreme conditions and mitigate the degradation of the coating, a comprehensive oxidation mechanism is required. In Phase I, CFD ...
STTR Phase I 2010 Department of DefenseNavy