You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Development of Advanced Programmable Memristors

    SBC: STRUCTURED MATERIALS INDUSTRIES, INC.            Topic: AF09BT23

    Structured Materials Industries, Inc. (SMI), working with others have demonstrated functioning fundamental memristor material technology. In this program, working with our University partner and end use collaborators, we propose to provide an infrastructure for making memristor materials at production scales, expand/refine the known memristor materials, provide samples of the produced memristor ma ...

    STTR Phase I 2010 Department of DefenseAir Force
  2. ULTRAFAST DIAGNOSTICS FOR NOVEL ENERGETIC MATERIALS IN ROCKET ENGINE ENVIRONMENTS

    SBC: SPECTRAL ENERGIES LLC            Topic: AF08T010

    The objectives of this Phase-II research effort is focused on transitioning noninvasive diagnostic techniques based on ultrafast lasers for characterizing nanoenergetic materials and their performance in rocket engine environments. Through the use of ultrafast laser imaging and spectroscopy, it is possible to isolate and characterize each physical process from initiation through energy release an ...

    STTR Phase II 2010 Department of DefenseAir Force
  3. Novel Algorithm/Hardware Partnerships for Real-Time Nonlinear Control

    SBC: STOCHASTECH CORPORATION            Topic: AF09BT06

    The real-time implementation of controls in nonlinear systems remains one of the great challenges in applying advanced control technology. Often, linearization around a set point is the only practical approach, and many controllers implemented in hardware systems are simple PID feedback mechanisms. To apply Pontryagin’s principle or Bellman’s equation using conventional hardware and algorith ...

    STTR Phase I 2010 Department of DefenseAir Force
  4. Robust Model for Behavior of Complex Materials during Spin Testing

    SBC: SYMPLECTIC ENGINEERING CORP            Topic: AF08T013

    The objective of this project is to develop a practical finite element-based simulation of spin-pit tests of disks. The performance of disks in spin-pit tests critically depends on localized effects, such as residual stresses, dislocations, and microstructure gradients. Therefore, a two-scale modeling approach is adopted. At the global-scale, the disk is represented by means of finite elements wit ...

    STTR Phase II 2010 Department of DefenseAir Force
  5. Plasmon Induced Photoelectrochemistry for artificial photosynthesis

    SBC: Tanner Research, Inc.            Topic: AF09BT39

    The Air Force has a strategic need for a fuel source that is renewable (and which does not rely on foreign petroleum sources). Several approaches to a renewable fuel source have been investigated; with “artificial photosynthesis” being one example. At its core, the photosynthesis reaction is a photoinduced charge separation reaction with light being concentrated by antenna complexes onto a c ...

    STTR Phase I 2010 Department of DefenseAir Force
  6. Frequency agile THz detectors for multiplicative mixing

    SBC: Tanner Research, Inc.            Topic: AF08BT26

    ABSTRACT: A system that operates at room temperature and that could scan for concealed weapons from standoff distances of >10 m would be a tremendous asset for US military homeland security personnel worldwide. THz imaging can, potentially, be used for this application, but it requires the development of a new class of THz detectors whereby the signal to noise ratios are improved significantly. ...

    STTR Phase II 2010 Department of DefenseAir Force
  7. Simulation Tool for Modeling Weakly Ionized Plasma

    SBC: TECH-X CORPORATION            Topic: AF09BT10

    We propose to develop a commercial weakly ionized plasma modeling capability based off of Tech-X’s high energy density plasma fluid code TxFluids. The new additions will be able to be used to model hypersonic vehicle physics including shock waves, plasma chemistry and innovative techniques for blackout mitigation and hypersonic vehicle control through the application of electric and/or magnetic ...

    STTR Phase I 2010 Department of DefenseAir Force
  8. High Energy Density Nanocomposite Based on Tailored Surface Chemistry

    SBC: TPL, INC            Topic: AF09BT05

    High energy density capacitors are required for practical implementation of GW-class pulse power loads. In response to this need, TPL has established unique dielectric and capacitor capabilities. Revolutionary materials, designs and manufacturing process have been developed for power sources that have potential for an order of magnitude reduction in mass and volume relative to current commercial ...

    STTR Phase I 2010 Department of DefenseAir Force
  9. Tools for Modeling & Simulation of Molecular and Nanomaterials for Optically Responsive Devices

    SBC: UES INC            Topic: AF09BT30

    Military applications for CBRNE/GWTO and C4ISR require R&D for materials to protect personnel and equipment. However, challenges remain in experimental synthesis and characterization of new materials, such as providing insight into observed properties for further advancement. Thus, it is essential to develop a predictive modeling and simulation approach that will not only provide a fundamental u ...

    STTR Phase I 2010 Department of DefenseAir Force
  10. Ultradense Plasmonic Integrated Devices and Circuits

    SBC: ULTIMARA INC            Topic: AF08BT18

    We propose to develop ultradense plasmonic integrated devices and circuits for optical interconnect compatible with the electronic circuitry. In our proposal, we will employ engineered metallic nanostructures that combine energy concentration by plasmonic lenses and retardation-based plasmonic resonances to even further boost the efficiency of materials exhibiting optical nonlinearity. These plas ...

    STTR Phase I 2010 Department of DefenseAir Force
US Flag An Official Website of the United States Government