You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Programmable Multi-Frequency Transmitter

    SBC: Space Micro Inc.            Topic: MDA16T005

    Space Micro and partner institution Arizona State University propose to design and prototype a Programmable Multi-Frequency Transmitter (PMFT) that is compliant with both the Kill Vehicle Modular Open Architecture (KVMOA) and Space Telecommunications Radio System (STRS) standards. The KVMOA maximizes reuse of components and system designs and reduce total ownership costs. The STRS standard allows ...

    STTR Phase I 2017 Department of DefenseMissile Defense Agency
  2. Process diagnostics to quantify mechanical performance of AM parts

    SBC: POLARONYX INC            Topic: N16AT004

    This Navy STTR Phase I proposal presents an unprecedented NDI tool to quantify mechanical properties of metal parts made with laser additive manufacturing with material characteristics and process parameters. A fiber laser SAW and heterodyne detection is used with LIBS to study both in-process and post-process for both flat and shaped parts. It is the enabling technology for characterize the AM pa ...

    STTR Phase I 2016 Department of DefenseNavy
  3. Prediction of Rotor Loads from Fuselage Sensors for Improved Structural Modeling and Fatigue Life Calculation

    SBC: ATA ENGINEERING, INC.            Topic: N17AT009

    ATA Engineering and researchers at the Georgia Institute of Technology will develop a framework for the accurate reconstruction of rotor loads from a suite of fixed-frame fuselage sensors that are utilized to augment physics-based simulations. The loads reconstruction framework will consist of two modules: the physics module, which provides first-principles predictions from simulations, and the se ...

    STTR Phase I 2017 Department of DefenseNavy
  4. Polychromatic guide-stars using novel optically pumped semiconductor disk lasers

    SBC: Crystalline Mirror Solutions, LLC            Topic: AF17AT005

    During the last two decades, vertical-external-cavity surface-emitting lasers (VECSELs) have emerged as excellent high-power laser sources that combine diode-pumping, broad-pump tolerance, wavelength selectivity, narrow linewidth, broad tunability, high beam quality, compactness, and efficiency into one attractive package. These characteristics make them an ideal candidate for use as more economic ...

    STTR Phase I 2017 Department of DefenseAir Force
  5. Phase-Change Materials for Tunable Infrared Devices

    SBC: Sensormetrix, INC            Topic: N17AT020

    The proposed Phase I research seeks to develop innovative tunable IR filters based on phase change plasmonic composite materials. Concepts for a switchable device that is capable of providing dynamic narrowband spectral properties within the 3-12 micron wavelength range will be developed.

    STTR Phase I 2017 Department of DefenseNavy
  6. Parallel Two-Electron Reduced Density Matrix Based Electronic Structure Software for Highly Correlated Molecules and Materials

    SBC: Q-CHEM INC            Topic: A14AT013

    Variational two-electron reduced-density-matrix (v2RDM) methods can provide a reference-independent description of the electronic structure of many-electron systems that naturally captures multireference correlation effects. These methods offer one of the few possible routes to performing the large-active-space computations that are necessary for the qualitative description of strongly-correlated ...

    STTR Phase II 2016 Department of DefenseArmy
  7. Optimizing Human-Automation Team Workload through a Non-Invasive Detection System

    SBC: Stottler Henke Associates, Inc.            Topic: ST16C003

    We propose to investigate, in collaboration with the Massachusetts General Hospital Voice Center and Altec, Inc., the application of surface electromyography (sEMG) to assessing cognitive workload, strain, and overload. Specifically, sEMG sensors placed on the face and neck will detect emotional/motor responses to workload strain. The proposed effort will build on the substantial sEMG experience o ...

    STTR Phase I 2017 Department of DefenseDefense Advanced Research Projects Agency
  8. Optimizing Human-Automation Team Workload through a Non-Invasive Detection System

    SBC: Cognionics, Inc.            Topic: ST16C003

    This STTR project aims to assess the feasibility of using laryngeal EMG to detect operator workload and strain. Phase I will develop a wearable neckband device positioning an array of laryngeal EMG electrodes plus additional sensors for measuring masseter EMG, heart rate variability, GSR and estimated relative blood pressure. The neckband will be optimized to be both wearable, comfortable and resi ...

    STTR Phase I 2017 Department of DefenseDefense Advanced Research Projects Agency
  9. Novel Separator Materials for Achieving High Energy/Power Density, Safe, Long-Lasting Lithium-ion Batteries for Navy Aircraft Applications.

    SBC: OCEANIT LABORATORIES INC            Topic: N16AT008

    Oceanit proposes to develop and demonstrate novel, tailored, designer separator materials with optimized properties to maximize lithium-ion cell/battery performance, life, safety and reliability.

    STTR Phase I 2016 Department of DefenseNavy
  10. Novel Polymer-Derived Carbide and Boride Refractory Ceramics

    SBC: EDWARD POPE DR            Topic: AF16AT26

    In this Air Force Phase I STTR program, MATECH proposes to demonstrate novel pre-ceramic polymer systems complimenting the development of Ultra High Temperature (UHT), high ceramic yield, refractory ceramic matrix composites (CMCs). A leader in developme...

    STTR Phase I 2016 Department of DefenseAir Force
US Flag An Official Website of the United States Government