You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Additive Manufactured Smart Structures with Discrete Embedded Sensors

    SBC: TRITON SYSTEMS, INC.            Topic: A17AT024

    The purpose of this proposal is to additively manufacture (AM) smart structures with embedded electronics such as sensors, accelerometers, antennas, etc. The goal of these smart structures will be to enhance the effectiveness and survivability of the Armys ground systems. The use of additive manufacturing smart structures provides flexibility in the materials used and the functionality of the elec ...

    STTR Phase I 2017 Department of DefenseArmy
  2. Real Time Inline Bacteria Detection for Military Mobile Water Treatment System

    SBC: PHYSICAL SCIENCES INC.            Topic: A17AT023

    Physical Sciences Inc., in cooperation with Boston University, proposes to develop an Interferometric Reflectance Imaging Sensor (IRIS) to detect waterborne pathogens including E. coli for use with military mobile water treatment systems. The imaging platform will employ an algorithm to discriminate E. coli based on size/shape analysis concurrent with capture probes with application to multiplexe ...

    STTR Phase I 2017 Department of DefenseArmy
  3. Acoustically/Vibrationally Enhanced High Frequency Electromagnetic Detector for Buried Landmines

    SBC: White River Technologies Inc            Topic: A16AT004

    White River Technologies, Inc. (WRT) and University of Vermont (UVM) present this proposal, "Acoustically/Vibrationally Enhanced High Frequency Electromagnetic Detector for Buried Landmines". Among the primary gaps in our current landmine detection technology base is the ability to detect a wide range of buried explosive hazards including emerging low-metal mines and improvised explosive devices ...

    STTR Phase I 2016 Department of DefenseArmy
  4. Conductive Transmissive Coating for Enhanced-Absorption Thin Film Solar Cells

    SBC: AGILTRON, INC.            Topic: A15AT016

    Thin-film, lightweight, large-area flexible inorganic solar cells have shown promise to meet the militarys remote power needs on the battlefield. However, thin film solar cells normally have inferior conversion efficiencies due to limited absorption of sunlight by the thin active layer. Various approaches have been investigated to improve conversion efficiencies of thin film solar cells. Among the ...

    STTR Phase I 2016 Department of DefenseArmy
  5. Big Open Source Social Science (BOSSS)

    SBC: BOSTON FUSION CORP            Topic: A16AT013

    Boston Fusion Corp. and Arizona State University propose to research and develop Big Open Source Social Science (BOSSS). In BOSSS, we will create a unified approach that combines social and computer science methodologies to collect and interpret big open source data, yielding meaningful focused analysis of selected populations. We will develop a system framework that adaptively learns social behav ...

    STTR Phase I 2016 Department of DefenseArmy
  6. Biological Agent Detection Network

    SBC: PHYSICAL SCIENCES INC.            Topic: A17AT020

    Physical Sciences Inc. in cooperation with University of Notre Dame proposes to develop a method for the persistent surveillance and detection of aerosolized biological warfare agents using a distributed point bioaerosol detector network, local meteorological sensors, existing infrared surveillance cameras, and crowdsourced georeferenced network traffic and phrase monitoring. The proposed technolo ...

    STTR Phase I 2017 Department of DefenseArmy
  7. Bioaerosol Detector Wide Area Network

    SBC: Arete Associates            Topic: A17AT020

    Historically, the monitoring and detection of biological threats has been carried out via the deployment of high sensitivity / high complexity monitoring nodes to insure high probability of detection and low false alarm rate. Unfortunately, this detection strategy has inherent limits with respect to coverage and response due to its high deployment/support costs, mandating a new approach to environ ...

    STTR Phase I 2017 Department of DefenseArmy
  8. Heterogeneously Integrated Active Laser Sensing Platform on Si

    SBC: PHYSICAL SCIENCES INC.            Topic: A17AT005

    We propose to develop highly-sensitive low size, weight, and power (SWaP) chip-scale mid-infrared integrated-optic sensors for trace gas measurements, We will combine Tunable Diode Laser Spectroscopy (TDLAS) detection techniques with narrow-linewidth fast-tuning Distributed Feedback (DFB) Quantum Cascade and Interband Cascade Lasers (QCLs and ICLs) to create a platform for a family of sensors, ea ...

    STTR Phase I 2017 Department of DefenseArmy
  9. Nanostructured conductive transparent coatings

    SBC: TRITON SYSTEMS, INC.            Topic: A15AT016

    Triton Systems, Inc. and its academic partner are proposing to fabricate an innovative highly conductive and transmissive thin layer to replace ITO on large area, lightweight solar cells. Part of the proposed approach will be to texture the surface of the coating to improve light transmission into the solar cell. Triton will work with a manufacturer of flexible solar panels for the Army, who wil ...

    STTR Phase I 2016 Department of DefenseArmy
  10. Acoustically/Vibrationally Enhanced High Frequency Electromagnetic Detector for Buried Landmines

    SBC: AKELA INC            Topic: A16AT004

    Laboratory investigations have suggested that acoustically or vibrationally inducing motion in buried targets can aid in improving target detectability through a characteristic response related to differential target motion. This gain is realized by adding an additional degree of freedom, modulation due to motion in the GPR return signal, to use as a discriminating feature. The AKELA team is propo ...

    STTR Phase I 2016 Department of DefenseArmy
US Flag An Official Website of the United States Government