You are here
Award Data
The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.
Download all SBIR.gov award data either with award abstracts (290MB)
or without award abstracts (65MB).
A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.
The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.
-
In Situ Inspection of Additive Manufactured Metallic Parts Using Laser Ultrasonics
SBC: INTELLIGENT OPTICAL SYSTEMS INC Topic: N15AT008Additive manufacturing (AM) is a very promising technique for rapid, low-cost production of aircraft parts directly from a CAD file. AM is especially appealing for complex parts that would be costly or impossible to fabricate by machining or casting. At the current time there are no reliable, cost-effective techniques to qualify the finished parts. Several government studies have noted this gap an ...
STTR Phase II 2016 Department of DefenseNavy -
Injection Locked "Cooker" Magnetron
SBC: PHYSICAL SCIENCES INC. Topic: N20AT015The Navy desires a compact and highly efficient S-band magnetron source with stabilized output capable of modulation over a narrow bandwidth. In this Phase I STTR proposal, Physical Sciences Inc (PSI) outlines the development of an injection locked “cooker” magnetron which can be used for frequency shift keying (FSK) or phase shift keying (PSK) in a portable high power transmission device. In ...
STTR Phase I 2020 Department of DefenseNavy -
In-Air E-field Sensor for Airborne Applications
SBC: White River Technologies Inc Topic: N15AT004The U.S. Navy is seeking new technologies and platforms to advance airborne anti-submarine warfare (ASW) and related maritime surveillance. Current magnetic anomaly detection (MAD) sensors, such as the latest versions of atomic magnetometers, are capable of very low noise operation. However, the performance of these sensors can be limited by the geomagnetic noise environment more so than by eithe ...
STTR Phase II 2016 Department of DefenseNavy -
Hybrid Unmanned Air / Underwater Vehicle for Explosive Ordnance Disposal (EOD) and Mine Countermeasures (MCM)
SBC: GREENSIGHT INC. Topic: N16AT025A particularly challenging task for the US Navy today is that of Explosive Ordnance Disposal (EOD) of underwater mines; the Mine Countermeasures (MCM) mission. The semi-submersible Remote Multi-Mission Vehicle (RMMV) has emerged as an unmanned solution to handle MCM missions. While the RMMV is groundbreaking, the basis of the technology is a relatively slow-moving watercraft.GreenSight Agronomics, ...
STTR Phase I 2016 Department of DefenseNavy -
High Hesitivity Magnetic Materials for Magnetic Toroid and Flat Dipole Antennas
SBC: WINCHESTER TECHNOLOGIES LLC Topic: N16AT001Novel approaches are needed to improve the performance and reduce the size, number and signature of antennas with significantly enhanced efficiency in HF-UHF. It has been shown recently hesitivity, which is able to characterize the performance of the material and categorize the radiation efficiency of magnetodielectric wire antennas; the higher the hesitivity, the higher the attainable antenna eff ...
STTR Phase I 2016 Department of DefenseNavy -
High Fidelity Rotorcraft Towing Modeling and Simulation with Towed Magnetic Anomaly Detection System
SBC: ADVANCED ROTORCRAFT TECHNOLOGY, INC. Topic: N15AT009Towing of a Magnetic Anomaly Detection (MAD) system is an important aspect of rotorcraftmaritime operation. The oscillatory rotorcraft combined with the long and flexible towingcable, the low mass ratio of the towed body to the towing aircraft, and the rotor wake effecton the towed body presents a challenge for integration of a modern MAD system withrotorcraft platform. The research objective is t ...
STTR Phase II 2016 Department of DefenseNavy -
High Efficiency Propeller for Small Unmanned X Systems using Advanced Composite Materials
SBC: CATTO PROPELLERS Topic: N20AT006In the proposed STTR study, Catto Propellers, Inc. (Catto) and the University of North Dakota (UND) will create an efficient new propeller design utilizing advanced composite materials for use on small unmanned x systems. During Phase I, a comprehensive study will be conducted to develop a new propeller design in order to increase propeller efficiency, reduce aerodynamic noise and utilize innova ...
STTR Phase I 2020 Department of DefenseNavy -
Hexahedral Dominant Auto-Mesh Generator
SBC: M4 ENGINEERING, INC. Topic: N20AT004Advances in both software and computer hardware have made the finite element method the preeminent choice for analyzing highly complex systems that are of great value to the Department of Defense. The US Defense industry, however, continues to spend enormous time and resources in mesh generation, a key step in finite element analysis, despite progress that has been made in automated mesh gener ...
STTR Phase I 2020 Department of DefenseNavy -
Hexahedral Dominant Auto-Mesh Generator
SBC: HYPERCOMP INC Topic: N20AT004The objective of our proposed STTR phase-I work is to transition the latest advancements within the academic community to the design of a robust, user-friendly, and application-oriented tool for automatic hex-dominant meshing. Our software will fully couple CAD models to the discretized domain required by finite element software in structural analysis and other simulation and modeling applications ...
STTR Phase I 2020 Department of DefenseNavy -
Fully Automated Quantum Cascade Laser Design Aided by Machine Learning
SBC: Pendar Technologies, LLC Topic: N20AT003Pendar Technologies proposes to develop a QCL simulation tools that leverage machine learning to dramatically improve the speed of QCL device design. The innovative QCL design suite proposed will benefit from recent advances made by Pendar in bandstructure engineering, laser cavity design and thermal management at the chip and the package level.
STTR Phase I 2020 Department of DefenseNavy