You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Novel Separator Materials for Achieving High Energy/Power Density, Safe, Long-Lasting Lithium-ion Batteries for Navy Aircraft Applications.

    SBC: OCEANIT LABORATORIES INC            Topic: N16AT008

    Oceanit proposes to develop and demonstrate novel, tailored, designer separator materials with optimized properties to maximize lithium-ion cell/battery performance, life, safety and reliability.

    STTR Phase I 2016 Department of DefenseNavy
  2. High Fidelity Computational Models for Aggregated Tissue Interaction in Surgical Simulations

    SBC: CFD RESEARCH CORPORATION            Topic: DHP16A001

    Surgical simulations aiming to support surgeon practices and medical education have attracted enormous research effort over the last two decades. However, the physical reality, especially on simulating aggregated tissue interaction, is still unsatisfactory. In this proposed work, an open source surgery simulation framework, SoFMIS, will be utilized and enhanced with tissue interaction models to a ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  3. Process diagnostics to quantify mechanical performance of AM parts

    SBC: POLARONYX INC            Topic: N16AT004

    This Navy STTR Phase I proposal presents an unprecedented NDI tool to quantify mechanical properties of metal parts made with laser additive manufacturing with material characteristics and process parameters. A fiber laser SAW and heterodyne detection is used with LIBS to study both in-process and post-process for both flat and shaped parts. It is the enabling technology for characterize the AM pa ...

    STTR Phase I 2016 Department of DefenseNavy
  4. High Fidelity Rotorcraft Towing Modeling and Simulation with Towed Magnetic Anomaly Detection System

    SBC: ADVANCED ROTORCRAFT TECHNOLOGY, INC.            Topic: N15AT009

    Towing of a Magnetic Anomaly Detection (MAD) system is an important aspect of rotorcraftmaritime operation. The oscillatory rotorcraft combined with the long and flexible towingcable, the low mass ratio of the towed body to the towing aircraft, and the rotor wake effecton the towed body presents a challenge for integration of a modern MAD system withrotorcraft platform. The research objective is t ...

    STTR Phase II 2016 Department of DefenseNavy
  5. Development of powder bed printing (3DP) for rapid and flexible fabrication of energetic material payloads and munitions

    SBC: MAKEL ENGINEERING, INC.            Topic: DTRA16A001

    This program will demonstrate how additive manufacturing technologies can be used with reactive and high energy materials to create rapid and flexible fabrication of payload and munitions. Our primary approach to this problem will be to use powder bed binder printing techniques to print reactive structures. The anticipated feedstock will consist of composite particles containing all reactant spe ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  6. Fully Metallic Self-Fragmenting Structural Reactive Materials Using Composites and Alloys Comprised of Aluminum, Lithium, and Magnesium

    SBC: Adranos Energetics LLC            Topic: DTRA16A002

    While aluminum casing materials provide some enhanced performance and thermal loading to explosive ordinance, their overall effectiveness is highly limited by incomplete combustion and long residence times. In order to reduce these problems, the casing material must be designed to facilitate rapid fragmentation through either specialized casing geometries or greatly refined initial particle sizes. ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  7. Compact Laser Drivers for Photoconductive Semiconductor Switches

    SBC: ASR Corporation            Topic: DTRA16A004

    A compact laser driver will allow photoconductive semiconductor switches to be used in small EMP simulator "building blocks" (EMPBB). Combined with a battery powered on-board pulsed power system, these EMPBBs will allow the construction of flexible EMP test facilities with nothing more than a single fiber optic timing connection to each EMPBB.

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  8. Modular Pulse Charger and Laser Triggering System for Large-Scale EMP and HPM Applications

    SBC: SCIENTIFIC APPLICATIONS & RESEARCH ASSOCIATES, INC.            Topic: DTRA16A004

    For effective protection against EMP and HPM threats, it is important to understand the physics of the threats, and also to quantify the effects they have on electrical systems. EMP and HPM vulnerability testing requires delivery of high peak power and electric fields to distant targets. The most practical solution to simulate such environments is to develop a modular, optically-isolated MV-antenn ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  9. Low-Cost and Small-Size MBE System for Various Materials Development

    SBC: VESCO-NM, LLC            Topic: AF16AT25

    Molecular beam epitaxy has become essential technique to produce high quality materials and complicated structures. Competing with other growth techniques, such as MOCVD, it has demonstrated higher materials quality and better film uniformity. These adva...

    STTR Phase I 2016 Department of DefenseAir Force
  10. Novel Polymer-Derived Carbide and Boride Refractory Ceramics

    SBC: EDWARD POPE DR            Topic: AF16AT26

    In this Air Force Phase I STTR program, MATECH proposes to demonstrate novel pre-ceramic polymer systems complimenting the development of Ultra High Temperature (UHT), high ceramic yield, refractory ceramic matrix composites (CMCs). A leader in developme...

    STTR Phase I 2016 Department of DefenseAir Force
US Flag An Official Website of the United States Government