You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Reliable Manufacturing of Scandia-Doped Tungsten Powders for Thermionic Cathodes

    SBC: NGIMAT, LLC            Topic: N15AT010

    In this STTR effort nGimat will partner with the University of Kentucky to develop a new process for manufacturing scandia-doped tungsten powder for use in vacuum tube cathode devices. While a significant amount of research over the last several decades has shown promise for scandate cathode materials, reliable manufacturing processes that enable commercialization of this technology have remained ...

    STTR Phase I 2015 Department of DefenseNavy
  2. Novel Approach to Hybrid High Temperature Superconducting Cable

    SBC: TAI-YANG RESEARCH CO            Topic: N15AT016

    To handle the so-called black start fault contingency, Energy to Power Solutions proposes the use of a novel hybrid cable design. The cable would be designed to handle the full 100 % electric power load under normal operating and battle conditions (i.e. a fully/partially functioning cryogenic cooling system operating at cryogenic temperatures ~ 50-60 K), and capable of handling 30 % of the rated p ...

    STTR Phase I 2015 Department of DefenseNavy
  3. High Fidelity Rotorcraft Towing Modeling and Simulation with Towed Magnetic Anomaly Detection System

    SBC: ADVANCED ROTORCRAFT TECHNOLOGY, INC.            Topic: N15AT009

    Towing of a Magnetic Anomaly Detection (MAD) system is an important aspect of rotorcraft maritime operation in support of Anti-Submarine Warfare (ASW). The vibratory rotary wing platform combined with the long and flexible towing cable, the low mass ratio of the towed body to the total mass (the sum of the tow body and the towing aircraft), and the rotor downwash impingement on the towed body duri ...

    STTR Phase I 2015 Department of DefenseNavy
  4. Robust Mission and Safety Critical Li-Ion BMS for Aerospace Applications

    SBC: Space Information Laboratories, LLC            Topic: N15AT001

    Space Information Labs (SIL) and South Dakota State University (SDSU) have teamed to provide Navy an innovative, but also producible, approach to a robust mission and safety critical Li-Ion battery man-agement system across Navy platforms to include aircraft, helicopters, UAS, missiles and directed energy weapons. SILs modular and scalable Li-Ion Intelli-Pack battery system will be designed to fro ...

    STTR Phase I 2015 Department of DefenseNavy
  5. Pseudospectral Optimal Control for Flight Trajectory Optimization

    SBC: STOCHASTECH CORPORATION            Topic: N15AT006

    The computation and real-time implementation of controls in nonlinear systems remains one of the great challenges for applying optimal control theory in demanding aerospace and industrial systems. Often, linearization around a set point is the only practical approach, and many controllers implemented in hardware systems are simple linear feedback mechanisms. From proportional guidance in missiles ...

    STTR Phase I 2015 Department of DefenseNavy
  6. Nanocomposite Scandate Tungsten Powder for High Current Density and Long Life Thermionic Cathodes

    SBC: Vacuum Process Engineering, Inc.            Topic: N15AT010

    Vacuum Process Engineering Inc. in collaboration with the UC Davis millimeter wave research group proposes to develop a large scale production process for nanocomposite scandate tungsten powder for advanced high current density and long life thermionic cathodes that have been previously demonstrated by UC Davis to be superior to the commercially available state-of-the-art. The produced cathodes de ...

    STTR Phase I 2015 Department of DefenseNavy
  7. Aircraft Carrier-based Precision Ship-Relative Navigation Guidance for Aircraft Landing under Emissions Control Conditions

    SBC: SA Photonics, Inc.            Topic: N15AT014

    This proposal describes an all optical fixed wing landing system for a aircraft carrier capable of flying an aircraft all the way to landing in a RF denied environment. The precision, reliability and accuracy of this system will allow control the aircraft without the help from the pilot all the way to touch down. It will work seamlessly with UAVs and manned aircraft that have been retrofitted with ...

    STTR Phase I 2015 Department of DefenseNavy
  8. Innovative Physics-based Modeling Tool for Application to Passive Radio Frequency Identification System on Rotorcraft

    SBC: MATHEMATICAL SYSTEMS & SOLUTIONS INC            Topic: N15AT005

    We propose development of a software capability which, based on use of MathSysaccurate and efficient exact-physics computational electromagnetics (CEM) solvers, will enable modeling and optimization of the properties of on-platform pRFID tag/reader antenna systems. Passive Radio Frequency Identification devices (pRFID) mounted on complex rotorcrafts pose challenging modeling problems: since pRFID ...

    STTR Phase I 2015 Department of DefenseNavy
  9. Pseudospectral Optimal Control for Flight Trajectory Optimization

    SBC: Systems Technology, Inc.            Topic: N15AT006

    Systems Technology, Inc. proposes to use and extend new technology from the University of Florida to enable real-time use of trajectory optimization to improve the guidance of autonomous air vehicles such as those used by the U. S. Navy. These range from missiles to UAVs. Specifically this work will involve enhancements, from the University of Florida, in hp-adaptive pseudospectral optimization. T ...

    STTR Phase I 2015 Department of DefenseNavy
  10. Conformal Additive Cellular Heat Exchanger Technology (CACHET)

    SBC: Technology Assessment and Transfer, Inc.            Topic: N15AT019

    Technology Assessment & Transfer, Inc. and subcontractors propose novel, high performance additive manufactured (AM) heat exchangers for military systems. The AM process will allow for conformal, lightweight designs that optimize use of available space. Design and modeling efforts in Phase I will identify enhanced heat transfer surfaces compatible with, and made possible by, an AM fabrication appr ...

    STTR Phase I 2015 Department of DefenseNavy
US Flag An Official Website of the United States Government