You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. High Gradient Accelerating Structure for Low Energy Protons

    SBC: RADIABEAM SYSTEMS, LLC            Topic: 25

    Currently, the most promising types of radiotherapy is proton or carbon therapy, as they have demonstrated significant improvements in clinical efficiency and reduced toxicity profiles. Unfortunately, the high cost of treatments using both proton and carbon beams is the limiting factor preventing hadron therapy from becoming the standard of care for a wider range of cancers. Designing a linear acc ...

    STTR Phase I 2016 Department of Energy
  2. Spouted Fluid Beds for Chemical Looping Combustion/Gasification

    SBC: ENVERGEX LLC            Topic: 15a

    This SBIR/STTR project targets the development of a validated modeling/design tool for predicting the behavior of spouted fluidizied beds for chemical looping combustion/gasification applications of coal and biomass fuels and fuel blends. Chemical looping is an advanced energy conversion technology for generating a pure CO2 effluent, which can then be sequestered or utilized. A spouted fluidized b ...

    STTR Phase I 2016 Department of Energy
  3. High Charge Density Hydrocarbon-Based PEMs

    SBC: GINER INC            Topic: 12c

    Despite incremental improvements in the technology, polyfluorosulfonic acid (PFSA) membranes are still not an ideal fuel cell membrane material and their drawbacks (e.g., high cost and low mechanical strength at high temperature) require development of alternative polymer electrolyte membranes (PEMs) for successful adoption of fuel cells as reliable and inexpensive energy conversion devices. The g ...

    STTR Phase I 2016 Department of Energy
  4. A Comprehensive Web Infrastructure for Standardizing, Storing, and Launching Density Functional Calculations of Materials and Chemical Compounds

    SBC: Citrine Informatics, Inc.            Topic: 09a

    Density functional theory is used by many researchers funded by the Department of Energy as a method for predicting the behavior of chemicals and materials used in energy applications. However, results of these calculations are often not standardized and, even when they are, expert-level understand of the methods is needed in order to properly perform a simulation. The energy research community a ...

    STTR Phase I 2016 Department of Energy
  5. Compact laser hygrometer for in-situ measurements of water vapor from small unmanned aerial vehicles

    SBC: PHYSICAL SCIENCES INC.            Topic: 17a

    The rate of climate change in the Arctic is larger than elsewhere on Earth. The Arctic has unique and complex couplings and feedbacks between the surface and the atmosphere that in turn modify the radiative balance there differently than elsewhere. Current understanding holds that an increase in downwelling long wave radiative flux, driven by increased water vapor and clouds, may be accelerating c ...

    STTR Phase I 2016 Department of Energy
  6. Membranes and Materials for Energy Efficiency- Subtopic d) Other. Title: Polysulfide-Blocking Polymer Membrane Separators for Rechargeable Lithium-Sulfur Batteries

    SBC: Sepion Technologies            Topic: 12a

    Renewable sources of energy including solar and wind are fast gaining ground on fossil fuels, in part because of their sustainability and environmental benefits. A major issue, however, has been finding efficient ways to store the energy that renewables generate for use when the demand for energy is high. Lithium-­‐sulfur batteries, which store electrical energy by transferring electrons to or ...

    STTR Phase I 2016 Department of Energy
  7. Nano-Patterned Cathode Surfaces for High Efficiency Photoinjectors

    SBC: RADIABEAM TECHNOLOGIES, LLC            Topic: 05a

    Metal photoinjector cathode development has shown recent promise with nano-patterning technology. However, in order to be competitive with semi-conductor cathodes, a further enhancement in efficiency is needed. TECHNICAL APPROACH Specific nano-patterning of sub-wavelength features to produce antennae provides coupling of incoming laser light with the surface of the metal cathode. Bowtie nano-anten ...

    STTR Phase II 2016 Department of Energy
  8. Single-shot Picosecond Temporal Resolution Transmission Electron Microscopy

    SBC: RADIABEAM TECHNOLOGIES, LLC            Topic: 07a

    Transmission electron microscopy (TEM) is one of the primary tools for biological and materials characterization and has many important research applications. There is an overarching need to improve the temporal resolution of TEMs. State-­‐of-­‐the-­‐art single shot TEM only achieve 10 nanoseconds temporal resolution. Technical Approach UCLA and RadiaBeam Tec ...

    STTR Phase II 2016 Department of Energy
  9. Method for Separation of Coal Conversion Products from Sorbents/Oxygen Carriers

    SBC: ENVERGEX LLC            Topic: 20e

    This Phase II Small Business Innovation Research project targets the development of a technology for segregating fuelbased contaminants (char and ash) from oxygen carrier material in the context of chemical looping combustion application. In chemical looping, the wellmixed solids that flow from the fuel reactor consisting of char, ash, and oxygen carrier particles cannot be completely separated in ...

    STTR Phase II 2016 Department of Energy
  10. Novel Carbon Fiber Synthesis Process Based on Joule Heating

    SBC: VURONYX TECHNOLOGIES LLC            Topic: 11c

    Current methods for manufacturing carbon fiber rely on high temperature ovens for the stabilization/oxidation and carbonization steps, which tend to be slow and energy intensive. As such, carbon fiber composites are expensive then steel, which limits their use in costsensitive, highvolume industrial applications such as automobiles, oil and gas, and infrastructure. To reduce energy consumption and ...

    STTR Phase II 2016 Department of Energy
US Flag An Official Website of the United States Government