You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. A Multiscale Simulation Framework to Model Energetic Materials Subjected to Shock Loading

    SBC: SIMMETRIX, INC.            Topic: AF15AT28

    ABSTRACT: The overall objective of this project is to develop scalable simulation components that effectively model the meso-scale physics of heterogeneous energetic materials subject to dynamic shock loading including matrix debonding, void collapse, and damage due to crystal to crystal interactions, and bridges the meso-scale to the macro-scale for system scale simulations of the transition to d ...

    STTR Phase I 2015 Department of DefenseAir Force
  2. Passive Radiometry Based Aerial Navigation

    SBC: OPTO-KNOWLEDGE SYSTEMS INC            Topic: AF15AT26

    ABSTRACT: The sensor system requirements for image based navigation that uses passive millimeter wave imaging radiometry will be established based on existing RelNav and AbsNav algorithms that were demonstrated to work in multi-modal imagery. Existing flight data will be used to simulate the PMMW imagery for these tests. A preliminary design of such a PMMW system will be created. Under Phase-II th ...

    STTR Phase I 2015 Department of DefenseAir Force
  3. Tool to Predict High-Power Electromagnetic Effects on Mobile Targets

    SBC: Andro Computational Solutions LLC            Topic: AF15AT05

    ABSTRACT: The focus of this research will be on developing a model and associated computational tool called HPEM-Expert that is consistent with the Directed RF Energy Assessment Model 2, (DREAM2), which describes and predicts the effects of a high-power electromagnetic (HPEM) signal on a mobile target, to improve on the existing DREAM tool. Our approach will be to develop a modeling and simulation ...

    STTR Phase I 2015 Department of DefenseAir Force
  4. Chalcogenide Glass Mid-IR Optic Development

    SBC: Rochester Precision Optics, LLC            Topic: AF15AT06

    ABSTRACT: The objective of this proposal is to develop a fast axis collimating lens for quantum cascade lasers (QCL) which emit in the midwave-infrared (MWIR) range. These lenses must withstand the stress of both continuous wave (CW) and pulsed laser emission. These high laser powers may cause ablation of lens material reducing effectiveness of the optic and leading to failure. Thus, a high damage ...

    STTR Phase I 2015 Department of DefenseAir Force
  5. Multi-Modal Sensor Fusion Utilizing Statistical Dependence and Compressive Sampling

    SBC: Andro Computational Solutions LLC            Topic: AF15AT16

    ABSTRACT: Our goal is to develop theoretical frameworks for efficient multisensor fusion of high dimensional data for target detection localization and tracking. We plan to develop novel algorithms based upon our previous research on copula theory to perform inference with multi-modal correlated sensor data. Copulas describes the dependence between random variables and allow one to optimally explo ...

    STTR Phase I 2015 Department of DefenseAir Force
  6. Reverberation Mitigation of Speech

    SBC: MINERVA SYSTEMS & TECHNOLOGIES LLC            Topic: AF15AT17

    ABSTRACT: Speech recognition technology is in wide use today and has been successfully integrated in a number of applications. Most of these applications require a microphone located near the talker. However, when a distant microphone is used where the speaker is at some distance from the microphone as in a hands-free communication, or in a meeting room, there is a major problem with the captured ...

    STTR Phase I 2015 Department of DefenseAir Force
  7. Carbon Nanotube Technology for RF Amplification

    SBC: Carbonics, Inc.            Topic: AF15AT15

    ABSTRACT: This Phase I STTR project aims to develop a silicon friendly carbon nanotube field effect transistor platform technology with reduced contact resistance and wafer-scale aligned carbon nanotubes towards development of an L-band amplifier. Key innovation nuggets that will be developed include: 1) a wafer scalable process to deposit dense aligned arrays of high purity semiconducting and len ...

    STTR Phase I 2015 Department of DefenseAir Force
  8. Carbon Nanotube Technology for RF Amplification

    SBC: ATOM INC            Topic: AF15AT15

    ABSTRACT: In this project, we propose to develop the baseline process to form low source-drain contact resistance to the CNTs. This includes finding the right metal stack and annealing recipe to form good ohmic contact to the CNTs. The goal is to achieve a resistance less than 25 k at per nanotube contact. To reach such goal, we will leverage the interfacial dipole alignment of conjugated polyelec ...

    STTR Phase I 2015 Department of DefenseAir Force
  9. Carbon Nanotube Technology for RF Amplification

    SBC: CARBON TECHNOLOGY INC            Topic: AF15AT15

    ABSTRACT: Carbon nanotubes (CNTs) have great potential for high performance RF applications. Theoretical study has shown that the electrical current in a CFET is intrinsically linear. Today, linearity is the underlying limitation in increasing the data transport densities of wireless networks. The complex modulation protocols used to achieve higher data rates requires linear amplifiers. Increasing ...

    STTR Phase I 2015 Department of DefenseAir Force
  10. Design, Reconfigure, and Evaluate Autonomous Models in Training

    SBC: TIER 1 PERFORMANCE SOLUTIONS LLC            Topic: AF15AT14

    ABSTRACT: The proliferation of autonomous- and human-machine systems necessitates the creation of new tools for system design and evaluation. Key among these are simulation testbeds that support interactions between multiple warfighters and systems, and methods for creating and integrating intelligent agent models into simulation environments. We see a significant opportunity to advance the state ...

    STTR Phase I 2015 Department of DefenseAir Force
US Flag An Official Website of the United States Government