You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. A Software Toolkit for Predicting the Neural Signatures of Cognitive States

    SBC: SONALYSTS INC            Topic: AF18BT001

    The United States Air Force (USAF) has a long history of using human performance models to increase the effectiveness of training, and predict the impact of physical factors (like fatigue) and environmental factors (like time pressures and information uncertainty). Within Phase I, Sonalysts and Miami University worked to improve the quality of these models through the development of the EEG Modeli ...

    STTR Phase II 2020 Department of DefenseAir Force
  2. Rapid Nondestructive Inspection of Traditionally Uninspectable Adhesively-Filled Composite Joints

    SBC: THERMAL WAVE IMAGING INC            Topic: AF18BT016

    To a large extent, Carbon Fiber Reinforced Polymer (CFRP) composites have become the material of choice in modern aircraft design, due to their high strength-to-weight ratio, corrosion immunity and fatigue properties. Many primary structure components (e.g. bulkheads, stabilizers, wing boxes), where an aluminum skin was previously joined to a metallic airframe by fasteners, adhesives or welding, h ...

    STTR Phase II 2020 Department of DefenseAir Force
  3. Military Supersonic Cargo and Troop Transport Concept: How Exosonic's Commercial Supersonic Airliner can be Transitioned to a Military Supersonic Transport Vehicle

    SBC: EXOSONIC, INC.            Topic: AF19BT001

    Exosonic develops supersonic commercial jets for airlines and proposes a USAF version. This aircraft flies at Mach 1.8 over 5000 nmi and carries 64-92 troops or 6 troops and 6 463L master pallets.

    STTR Phase II 2020 Department of DefenseAir Force
  4. High Performance Energetic Propellant Ingredient Process Research and Development

    SBC: NALAS ENGINEERING SERVICES INC            Topic: N16AT021

    CL-20 is the most powerful conventional explosive known, but its high cost has limited its adoption in a range of potential applications. Par of the challenge in making these materials is the complexity of the reaction used to prepare the polycyclic cage. The complexity of this reaction makes it difficult to have insight into the reaction and to improve it. Additionally, several of the intermediat ...

    STTR Phase II 2018 Department of DefenseNavy
  5. Portable 3D Ultrasound Technology for Diagnosis of Traumatic Brain Injury (TBI)

    SBC: UTOPIACOMPRESSION,CORPORATION            Topic: AF19CT010

    In this Phase II STTR Project, Team UtopiaCompression (UC) will adapt its 3D ultrasound prototype device to address key research questions posed by AF TPOC and end-users (in particular, Eglin AFB Medical Community- Invisible Wounds Center, family/concussion clinics and emergency rooms). The prototype uses an innovative ultrasound design technology to capture 3D data of anatomical structures (here, ...

    STTR Phase II 2020 Department of DefenseAir Force
  6. Using explainable AI (XAI) and related technologies to reduce physician burnout and improve medical surge capacity.

    SBC: DIGITAS, LLC            Topic: AF20ATCSO1

    Physicians are highly burned out (up to 80% of physicians) and the COVID-19 pandemic is making this problem much worse; Department of Defense doctors are at higher risk (caring for more patients per capita).  Burnout may manifest itself as sustained stress; but also leads to severe effects such as physician suicides, physician drug abuse, and increased patient medical errors.  Electronic health ...

    STTR Phase II 2020 Department of DefenseAir Force
  7. Diamond Materials for Quantum Technologies

    SBC: GREAT LAKES CRYSTAL TECHNOLOGIES INC            Topic: AF19CT010

    Great Lakes Crystal Technologies (GLCT) is partnered with Michigan State University (MSU) to develop novel diamond materials for research and evaluation at Air Force Research Laboratory for applications in quantum communications. The technical effort seeks to build upon advanced plasma assisted chemical vapor deposition (CVD) technology licensed by GLCT which was developed at MSU by scientists at ...

    STTR Phase II 2020 Department of DefenseAir Force
  8. Positioning and Scaling of the CAVEMAN Human Body Model for Pilot Injury Risk Analysis

    SBC: CORVID TECHNOLOGIES, LLC            Topic: AF19CT010

    The proposed project will develop subject-specific FE models of the head and integrate them with a full body finite element model. The combination of patient-specific head geometries with the generalized body model will provide a platform with which to apply improved boundary conditions for the head and neck, including applied muscle tension and the application of appropriate kinematics of the hea ...

    STTR Phase II 2020 Department of DefenseAir Force
  9. Lasers Based on Gas or Liquid Filled Hollow-Core Photonic Crystal Fibers

    SBC: SA PHOTONICS, LLC            Topic: AF18BT015

    We propose a compact, monolithic, power scalable, hollow core fiber-gas laser emitting in the atmospheric transmission region in the mid-IR, titled "mid-IR ATLAS." The proposed optically pumped fiber-gas laser system is efficient, has a small footprint as well broad spectral coverage in the mid-IR. Due to the unique approach employed, the proposed technology allows generation of mid-IR output with ...

    STTR Phase II 2020 Department of DefenseAir Force
  10. Electrochemical Machining of Refractory Metals for Aerospace Applications

    SBC: Voxel Innovations, Inc.            Topic: AF19CT010

    Hypersonic systems travelling above the speed of Mach 5 impart intense thermal stress on the airframe, requiring the use of refractory alloys to withstand the heat. The leading edges of hypersonic airframes and scramjet engine intakes are required to be sharp, smooth, and highly accurate to reduce drag and prevent unwanted shock waves due to manufacturing errors. Additionally, rocket engines, both ...

    STTR Phase II 2020 Department of DefenseAir Force
US Flag An Official Website of the United States Government