You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. THz and Sub-THz MEMS-Fabricated Klystron Amplifier

    SBC: INNOSYS, INC.            Topic: A09AT016

    InnoSys and Purdue University will continue to research and develop robust Phase I approaches for building, implementing and demonstrating a new class of terahertz (THz) vacuum electronic device (VED) power amplifiers and power sources at frequencies in the range of 0.3-3.0 THz (the THz regime) employing advanced micro electro mechanical system (MEMS) and vacuum technology and processes. There is ...

    STTR Phase II 2010 Department of DefenseArmy
  2. Ocean Surface Vector Winds (OSVW)

    SBC: ATMOSPHERIC & SPACE TECHNOLOGY RESEARCH ASSOCIATES LLC            Topic: N16BT026

    Ocean surface winds are critically important in naval operations. They may aid, hinder, or negate maneuvers and operations, and are a primary consideration in routing ships. Continuous and reliable information on favorable and unfavorable sea state is critical for a broad range of naval missions, including strategic ship movement and positioning, aircraft carrier operations, aircraft deployment, e ...

    STTR Phase II 2019 Department of DefenseNavy
  3. Fast Updatable Large-area Holographic Display

    SBC: NEW SPAN OPTO-TECHNOLOGY, INC.            Topic: AF08T001

    Two-dimensional (2D) visualization techniques have limit capacity to achieve understanding of full dimensionality of the battlefield. Rewritable 3D holographic storage is promising for updatable 3D display applications. In Phase I, New Span Opto-Technology has demonstrated novel concepts of both holographic recording technique and recording material system without the use of high voltage. We have ...

    STTR Phase II 2010 Department of DefenseAir Force
  4. Fast Updatable Large-area Holographic Display

    SBC: NEW SPAN OPTO-TECHNOLOGY, INC.            Topic: AF08T001

    Two-dimensional (2D) visualization techniques have limit capacity to achieve understanding of full dimensionality of the battlefield. Rewritable 3D holographic storage is promising for updatable 3D display applications. In Phase I, New Span Opto-Technology has demonstrated novel concepts of both holographic recording technique and recording material system without the use of high voltage. We have ...

    STTR Phase II 2010 Department of DefenseAir Force
  5. Novel Separator Materials for Achieving High Energy/Power Density, Safe, Long-Lasting Lithium-ion Batteries for Navy Aircraft Applications

    SBC: ADA TECHNOLOGIES, INC.            Topic: N16AT008

    To meet Navy needs for high performance and safe lithium ion (Li-ion) batteries for naval aircraft, ADA Technologies Inc. (ADA) and its university collaborator propose to optimize and transfer a highly tunable, high performance and safe, block copolymer derived nanoporous separator. The innovative strategy provides a powerful tool to allow exquisite tuning of performance and safety features of the ...

    STTR Phase II 2018 Department of DefenseNavy
  6. Shear Stabilization Based Framework for the Failure Testing and Analysis of HSCs

    SBC: Roccor, LLC            Topic: AF17AT019

    Over the past 2 years, Roccor has successfully qualified and delivered High Strain Composite (HSC) products for space-flight customers including, 1) RF-Furlable boom, 2) a furlable-antenna system; and is currently qualifying HSC products for space-flight customers including 3) an FCC certified deorbit device, and 4) a solar array deployment system. Three of these missions will be launched in 2018. ...

    STTR Phase II 2019 Department of DefenseAir Force
  7. Autonomic Performance Assurance for Multi-Processor Supervisory Control

    SBC: COLORADO ENGINEERING INC.            Topic: OSD11T01

    Multi-processor computing systems are growing in capacity and usage. They encompass multiple, distributed implementations as well as heterogeneous, embedded computing architectures. The processing density enabled by such approaches holds promise for unmanned combat air vehicles (UCAVs) with their plethora of mission sensors and command and control processing requirements. However, the software ...

    STTR Phase II 2013 Department of DefenseAir Force
  8. Computationally Efficient, Accurate and Uncertainty Characterized Chemical Kinetics for Hydrocarbon Fuels

    SBC: CFD RESEARCH CORPORATION            Topic: AF17AT004

    High-pressure turbulent combustion occurs in many combustion devices critical to the Air Force. Notwithstanding significant progress in computational modeling of these devices; several challenges have remained. A fundamental challenge is identification of reaction pathways and reactions in small molecule foundational chemical kinetics requiring improvements under these high-pressure turbulent cond ...

    STTR Phase II 2019 Department of DefenseAir Force
  9. Coupled Multi-Physics Tool for Analysis of Structural Profile Disruption Effects of Aerovehicles

    SBC: CFD RESEARCH CORPORATION            Topic: AF17AT025

    High speed air vehicles operate at material strength performance limits and are at significant risk when subjected to additional localized heating that can result in softening, pitting and burn-through the material and potentially change the vehicle structural profile. These effects degrade aerodynamic performance. The team of CFDRC and UDRI proposed to develop, validate and deliver a comprehensiv ...

    STTR Phase II 2018 Department of DefenseAir Force
  10. Operating System Mechanisms for Many-Core Systems

    SBC: SECURBORATION, INC.            Topic: OSD11T04

    In the Phase I portion of this STTR, Securboration and renowned multicore expert Dr. Frank Mueller from North Carolina State University designed, developed, and benchmarked the proof-of-concept Pico-kernel Adaptive and Scalable Operating-system (PICASO) for many-core architectures. The Securboration Team took a scientific, experimentation-based approach to identifying and resolving shortcomings wi ...

    STTR Phase II 2013 Department of DefenseAir Force
US Flag An Official Website of the United States Government