You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. M&S Uncertainty Quantification

    SBC: OPTIMIZATION TECHNOLOGIES, INC.            Topic: MDA12T007

    OptTek Systems, Inc (OptTek), proposes an affordable, effective UQ capability for both legacy and new BMDS M & S. The OptTek Team includes research institution partner Oak Ridge National Laboratory (ORNL) and subcontractor RTSync Corporation (RTSync). The proposed BMDS M & S UQ capability maximizes insertability into existing and future MDA BMDS M & S-supported Event processes, analysis methods, a ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
  2. M&S Uncertainty Quantification

    SBC: NUMERICA CORPORATION            Topic: MDA12T007

    A goal of Uncertainty Quantification (UQ) is to use computer simulation of complex systems to make scientifically informed assessments for high-consequence decisions. Because end-to-end empirical data is difficult to obtain for the Ballistic Missile Defense System (BMDS), computer simulation provides the best method for understanding BMDS capabilities against a wide range of threats. Numerica Co ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
  3. M&S Uncertainty Quantification

    SBC: M4 ENGINEERING, INC.            Topic: MDA12T007

    M4 Engineering, Inc. and Missouri S & T propose to investigate and refine uncertainty quantification (UQ) methods for Ballistic Missile Defense Systems (BMDS) Modeling and Simulation (M & S) with the emphasis on demonstrating the feasibility of non-intrusive stochastic expansions based on polynomial chaos, which will address the accuracy and computational efficiency issues associated with UQ in BM ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
  4. Modeling of Lithium-Ion Cell Performance

    SBC: Quallion LLC            Topic: MDA10T004

    Quallion LLC proposes to continue development of its reference electrode technology into a commercial scale prototype and partner with the University of South Carolina to develop a life prediction model for cells cycled at high depths of discharge. In Phase II, Quallion will refine its reference electrode design based on lessons learned in Phase I, incorporate a reference electrode into commerc ...

    STTR Phase II 2013 Department of DefenseMissile Defense Agency
  5. Intelligent RF-IR Data Fusion using Artificial Intelligence Techniques

    SBC: STOTTLER HENKE ASSOCIATES, INC            Topic: MDA12T002

    There may be no more important mission for the US military than protection from ballistic missile attack. For any configuration of sensors, it is therefore extremely important to make the most of the collected sensor data. Specifically, this proposal describes how this objective can be accomplished by using artificial intelligence techniques to implement human-quality reasoning on object feature ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
  6. ModelSHOP- Model for Simulated Human Operator Performance

    SBC: STOTTLER HENKE ASSOCIATES, INC            Topic: MDA12T006

    We propose to develop the Model for Simulated Human Operator Performance (ModelSHOP), a behavior authoring and execution capability for injecting variable Human-in-Control (HIC) actions and decisions into Ballistic Missile Defense System (BMDS) simulation. ModelSHOP will provide a generative model structure for representing key human performance moderators to combine in different ways to simulate ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
  7. Integrated Thermal Management and Wafer-Scale Packaging for High-Power VCSELs

    SBC: Aerius Photonics, LLC.            Topic: MDA08T011

    Aerius Photonics is proposing to develop high-power Vertical Cavity Surface Emitting Lasers (VCSELs) and arrays on 4” substrates with an integrated thermal management approach to improve the thermal performance on an entirely wafer-level manufacturing compatible process. This is critical as waste heat and wafer-scale manufacturing approaches are driving factors for performance and costs in a la ...

    STTR Phase II 2010 Department of DefenseMissile Defense Agency
  8. Multi Junction Solar cells for Satellite

    SBC: CFD RESEARCH CORPORATION            Topic: MDA09T005

    Higher efficiency solar cells are needed to reduce mass, volume, and cost of DoD space missions. However, to achieve higher efficiency and radiation hardness of the best to date multi-junction photovoltaic (PV) devices, several challenges must be addressed. This project aims to develop: 1) Quantum Well (QW)-based multi-junction cell that exhibits enhanced efficiency, and 2) Radiation-hardened PV c ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  9. A Li-Ion Battery Tool for Predicting Life and Performance for Satellite Orbit Operations Scenarios

    SBC: GLOBAL AEROSPACE CORPORATION            Topic: MDA08T008

    The expected life of satellite Li-Ion batteries is determined by many factors, including thermal considerations, electrode chemistries, orbit and mission life, DOD, and pulse power requirements. First-principles battery model literature pertains primarily to orbital cycling at moderate DOD under isothermal conditions without variable power loads. Knowledge must be extended to encompass wider life ...

    STTR Phase II 2010 Department of DefenseMissile Defense Agency
  10. Producibility of Gallium Nitride Semiconductor Materials

    SBC: Inlustra Technologies LLC            Topic: MDA09T001

    Inlustra Technologies and the University of Notre Dame propose a Phase I STTR program that, combined with a subsequent Phase II effort, will result in methods for the scalable production of semi-insulating non-polar GaN substrates. These substrates will be utilized in the fabrication of high-power/high-frequency AlGaN-GaN electronic devices capable of reliable operation under high thermal load. ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government