You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. High Speed Spinning Scroll Expander (HiSSSE)- Organic Rankine Cycle for Increased Naval Ship Power Density and Fuel Efficiency

    SBC: Air Squared, Inc.            Topic: N19AT013

    Waste heat from Naval diesel generators provides significant opportunity to introduce organic Rankine cycles (ORC) to increase their fuel efficiency. The objective of the proposed effort is to design and demonstrate a high-speed, spinning scroll expander (HiSSSE) ORC as a power dense waste heat recovery system for diesel generators on ships. The system will leverage Air Squared’s spinning scroll ...

    STTR Phase I 2019 Department of DefenseNavy
  2. Compact Waste Heat Recovery Power Generation System

    SBC: SPECTRAL ENERGIES LLC            Topic: N19AT013

    The STTR topic N19A-T013 seeks innovative technology to improve the power density and efficiency of propulsion and power generation devices. To address this challenge, Spectral Energies in collaboration with its academic partner Dr. Rory Roberts at Wright State University proposes to develop a compact heat recovery system based on a supercritical CO2 based Rankin Cycle. At the end of the STTR prog ...

    STTR Phase I 2019 Department of DefenseNavy
  3. Propagation Established through Autonomous Raman Lidar (PEARL)

    SBC: SPECTRAL SCIENCES INC            Topic: N19AT015

    Accurate characterization of and propagation modeling through the Marine Boundary Layer is critical for maximizing Electro-Magnetic (EM) systems signal exploitation for naval asset offensive, defensive, and stealth operational performance. Strong temperature and humidity gradients in the Surface Boundary Layer lead to optical paths exhibiting Electro-Optic Infrared (EOIR) anomalous refraction and ...

    STTR Phase I 2019 Department of DefenseNavy
  4. Additive Manufacturing for Li-Ion Batteries (Phase II)

    SBC: PHYSICAL SCIENCES INC.            Topic: N18AT008

    Physical Sciences Inc. (PSI) will construct and demonstrate Li-ion cells for Naval Aviation applications using solvent free additive manufacturing techniques. Lithium-ion batteries simultaneously offering high energy and power density will be demonstrated using novel solvent-free electrode feedstocks. PSI will work with the Complex Fluids Lab (CFL) at the University of Connecticut to optimize the ...

    STTR Phase II 2019 Department of DefenseNavy
  5. FPGA Vulnerability Analysis Tools

    SBC: BLUERISC INC            Topic: N19AT018

    BlueRISC's proposed solution takes the form of an automated toolkit that is able to analyze an FPGA bitstream with respect to exploitability. The solution relies on an FPGA-agnostic framework for automatically reverse-engineering an FPGA-bitstream into an intermediate representation (IR). This IR is FPGA agnostic and enables a program-analytic framework for extracting a fundamental FPGA-centric Vu ...

    STTR Phase I 2019 Department of DefenseNavy
  6. Seamless Wireless Charging of Micro and Small Unmanned Aerial System Through Local Power Transmission Infrastructure

    SBC: EH GROUP INC            Topic: N19AT019

    Wireless charging of unmanned aerial system (UAS) platforms from the environment has the potential to greatly increase flight and mission times. A promising option is to use electromagnetic fields from the power transmission infrastructure as an energy source. EH Group and the University of Alabama propose a design for UAS wireless charging in the near-field environment of the commercial power tra ...

    STTR Phase I 2019 Department of DefenseNavy
  7. Data Analytics and Machine Learning Toolkit to Accelerate Materials Design and Processing Development

    SBC: CFD RESEARCH CORPORATION            Topic: N19AT020

    Navy has identified refractory high entropy alloy (RHEA) and metal additive manufacturing as two potential areas of interest. This includes designing new RHEA and optimizing metal additive manufacturing with specific material property requirements. Developing materials and processes via applying traditional experimentation and process optimization techniques is painfully slow due to the large numb ...

    STTR Phase I 2019 Department of DefenseNavy
  8. Forensic Models of Cyberspace Behaviors

    SBC: INTELLIGENESIS LLC            Topic: N19AT021

    Our solution will provide an automated system driven by advanced analytics and machine learning techniques to capture network traffic (including potential malicious events), perform forensic analysis of the events to identify threat actor tactics, techniques, and procedures (TTPs), create a database of classified events and TTPs (threat models) from which connections can be made between events, ac ...

    STTR Phase I 2019 Department of DefenseNavy
  9. Cyber Adversary Discovery Engine (CADE)

    SBC: CHARLES RIVER ANALYTICS, INC.            Topic: N19AT021

    We propose to design and build the Cyber Adversary Discovery Engine (CADE) for forensic cyber analysis. CADE combines expressive behavioral modeling technology with machine learning to automatically recognize adversary behaviors, goals and tactics, techniques and procedures (TTPs). CADE can further automatically recognize changes in adversary TTPs that occur in forensic data. A key technical capab ...

    STTR Phase I 2019 Department of DefenseNavy
  10. ALCHEMI: Attacker Learning in Cybernetworks using Heterogeneous Energy-guided Model Inference

    SBC: APTIMA INC            Topic: N19AT021

    The United States relies on networks of cyber-physical systems to conduct military and commercial operations, such as logistics, transportation, information sharing, energy production and distribution, financial transactions, elections, and infrastructure management. As the volume and diversity of cyber-attacks on these networks dramatically increase, there is a growing need for advanced tools and ...

    STTR Phase I 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government