You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY20 is not expected to be complete until September, 2021.

  1. Coherent Beam Combining of Mid-IR Lasers

    SBC: Pranalytica, Inc.            Topic: A10AT007

    Military applications, such as IRCM (Infrared Countermeasures) and stand-off sensing, require highly efficient optical sources with power outputs for room temperature continuous wave operation of several to a hundred watts in the 3-5 micron and 8-12 micron spectral bands. While quantum cascade lasers (QCLs) have become the sources of choice in these spectral regions, the only realistic option to ...

    STTR Phase I 2010 Department of DefenseArmy
  2. Multi-input Multi-output Synthetic Aperture Radar with Collocated Antennas

    SBC: SA Photonics, Inc.            Topic: A10AT005

    SA Photonics and the Georgia Tech Research Institute (GTRI) are please to propose the development of MIMO SAR/GMTI techniques. The approach is to leverage the extensive amount of research that has been conducted in an academic setting and to assess the feasibility of the transition of these techniques into system of practical interest.

    STTR Phase I 2010 Department of DefenseArmy
  3. Ultra Fine Grain Steel Alloys by Severe Plastic Deformation

    SBC: TRANSITION45 TECHNOLOGIES, INC.            Topic: A10AT001

    This STTR program proposes to exploit the tremendous benefits that could be offered by the development of ultra fine grain steel alloys for application to the production of high performance components for military rotorcraft applications. A severe plastic deformation technology based on isothermal forging technologies will be explored here. The goal is to demonstrate a practical, production leve ...

    STTR Phase I 2010 Department of DefenseArmy
  4. Plasmonic Sensor Array

    SBC: ULTIMARA INC.            Topic: A10AT002

    The goal of this program is to develop devices that can detect small electric fields over large frequency ranges while being compact and power efficient. We propose an electro-optic resonant plasmon that enhances the electro-optic phase shift in a small volume (

    STTR Phase I 2010 Department of DefenseArmy
  5. Random Number Generation for High Performance Computing

    SBC: Silicon Informatics, Inc.            Topic: A10AT012

    Highly scalable parallel random number generators (RNGs) will be developed, evaluated and implemented for use in high performance computing on thousands of multi-core processors and general purpose graphics processing units. The main contributions are: (a) design and implementation of new parallel test methods that capture the inter-stream correlations exhibited in practice and complement the curr ...

    STTR Phase I 2010 Department of DefenseArmy
  6. Impact of Climate Change on Military Compounds in the Environment

    SBC: Environmental Quality Management            Topic: A09AT024

    This will facilitate the development of remedial approaches for existing facilities and assist in planning new facilities, logistics, and procedures to protect the environment without impairing critical mission functionality. The commercial application will include software distribution and updates.

    STTR Phase I 2010 Department of DefenseArmy
  7. Plasmonic MEMS Sensor Array

    SBC: Five Stones Research Corporation            Topic: A10AT002

    Sensor development researchers and engineers have perpetually sought novel methods to reduce sensor size and improve performance. Continued miniaturization of sensors through micromachining has enabled novel applications and introduced new paradigms for engineered systems to interact with the world. The challenge has always been to improve performance while continually reducing size. In the cur ...

    STTR Phase I 2010 Department of DefenseArmy
  8. Simultaneous Imaging of Velocity and Temperature Fields in Reacting Flows using Thermographic Phosphors

    SBC: Metrolaser, Inc.            Topic: A09AT003

    A method is proposed for the simultaneous imaging of temperature and velocity fields inside combustion chambers to enable experimental data on turbulent heat fluxes needed for model validation and development. Applications include turbine engines, afterburners, internal combustion engines, and boilers. Temperature imaging is proposed with laser-induced luminescence imaging of phosphor particles su ...

    STTR Phase I 2010 Department of DefenseArmy
US Flag An Official Website of the United States Government