You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Scalable Manufacturing of Composite Components Using Nanostructured Heaters

    SBC: METIS DESIGN CORP            Topic: N18BT031

    Manufacturing of structural composites traditionally employs autoclaves to achieve high quality parts, including high fiber-volume-fractions and low porosity. A laminate comprised of stacked prepreg plies are cured under a vacuum in addition to ~7 bar of pressure to prevent formation of voids, particulalry in interlaminar (inter-sheet/ply) regions. However, manufacturing composites within an autoc ...

    STTR Phase I 2019 Department of DefenseNavy
  2. Catastrophic Optical Damage Mitigation in Quantum Cascade Lasers by Facet Disordering

    SBC: N2 Biomedical, LLC            Topic: N19AT004

    Quantum cascade laser optical output power is limited by laser facet catastrophic optical damage (COD). In edge-emitting semiconductor lasers COD is a thermal runaway process wherein the front facet of the laser heats under high power operation. This facet heating reduces the semiconductor bandgap which increases the optical absorption and also increases the electrical injection current in the fac ...

    STTR Phase I 2019 Department of DefenseNavy
  3. Process to Mitigate Catastrophic Optical Damage to Quantum Cascade Lasers

    SBC: PENDAR TECHNOLOGIES LLC            Topic: N19AT004

    In this program, we will develop solutions to optimize QCL fabrication processes, such as facet passivation and high thermal conductivity coatings, that will mitigate the reliability issues for high power QCL applications. In phase I, we will first evaluate all concepts and efforts that have been largely investigated for GaAs based high power diode lasers and transfer the knowledge to InP based QC ...

    STTR Phase I 2019 Department of DefenseNavy
  4. Process to Mitigate Catastrophic Optical Damage to Quantum Cascade Lasers

    SBC: IRGLARE LLC            Topic: N19AT004

    The development of a catastrophic optical damage model for quantum cascade lasers describing instantaneous laser damage at high optical power levels is proposed. The model will be validated by comparison to experimental data. Based on obtained results, changes to laser design and laser fabrication resulting in an increased damage threshold will be implemented. The work will ultimately result into ...

    STTR Phase I 2019 Department of DefenseNavy
  5. FPGA Vulnerability Analysis Tools

    SBC: BLUERISC INC            Topic: N19AT018

    BlueRISC's proposed solution takes the form of an automated toolkit that is able to analyze an FPGA bitstream with respect to exploitability. The solution relies on an FPGA-agnostic framework for automatically reverse-engineering an FPGA-bitstream into an intermediate representation (IR). This IR is FPGA agnostic and enables a program-analytic framework for extracting a fundamental FPGA-centric Vu ...

    STTR Phase I 2019 Department of DefenseNavy
  6. Forensic Models of Cyberspace Behaviors

    SBC: INTELLIGENESIS LLC            Topic: N19AT021

    Our solution will provide an automated system driven by advanced analytics and machine learning techniques to capture network traffic (including potential malicious events), perform forensic analysis of the events to identify threat actor tactics, techniques, and procedures (TTPs), create a database of classified events and TTPs (threat models) from which connections can be made between events, ac ...

    STTR Phase I 2019 Department of DefenseNavy
  7. Cyber Adversary Discovery Engine (CADE)

    SBC: CHARLES RIVER ANALYTICS, INC.            Topic: N19AT021

    We propose to design and build the Cyber Adversary Discovery Engine (CADE) for forensic cyber analysis. CADE combines expressive behavioral modeling technology with machine learning to automatically recognize adversary behaviors, goals and tactics, techniques and procedures (TTPs). CADE can further automatically recognize changes in adversary TTPs that occur in forensic data. A key technical capab ...

    STTR Phase I 2019 Department of DefenseNavy
  8. ALCHEMI: Attacker Learning in Cybernetworks using Heterogeneous Energy-guided Model Inference

    SBC: APTIMA INC            Topic: N19AT021

    The United States relies on networks of cyber-physical systems to conduct military and commercial operations, such as logistics, transportation, information sharing, energy production and distribution, financial transactions, elections, and infrastructure management. As the volume and diversity of cyber-attacks on these networks dramatically increase, there is a growing need for advanced tools and ...

    STTR Phase I 2019 Department of DefenseNavy
  9. A Wavelength-scalable Dual-stage Photonic Integrated Circuit Spectrometer

    SBC: PHYSICAL SCIENCES INC.            Topic: N19AT023

    In this program, Physical Sciences Inc. (PSI) will team with Professor Ali Adibi’s group at the Georgia Institute of Technology to develop a photonic integrated circuit (PIC) spectrometer that can simultaneously achieve high-resolution over wide-bandwidths using a scalable and foundry-ready approach. While a PIC-based spectrometer is a key component for on-chip Raman, fluorescence, and absorptio ...

    STTR Phase I 2019 Department of DefenseNavy
  10. Measuring Manipulation in Audiences Targeted by Coordinated Social Media Dissemination Tactics

    SBC: Intelligent Automation, Inc.            Topic: N19AT024

    The information environment has become a new battlefield for adversaries of the United States and its allies. Coordinated campaigns have been waged to radicalize, incite division, inflame, influence elections and public opinion on a variety of issues. These campaigns have weaponized social media by forming networks of synthetic accounts (botnets) which spread mis/disinformation, polarize groups an ...

    STTR Phase I 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government