You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Thermoelectric material-coated carbon nanotubes as high conductivity thermal interface materials

    SBC: ADA TECHNOLOGIES, INC.            Topic: AF09BT22

    The ever-decreasing size of the electronic microchips and the ever-increasing density of electronic components required to support future Air Force platforms are creating the problem of substantial localized heat generation that can impair component operation. State of the art thermal interface materials (TIMs), that are used to dissipate heat from the source to the spreader in a microchip, are se ...

    STTR Phase I 2010 Department of DefenseAir Force
  2. Network Coding and Network Tomography (NCNT) Analysis and Algorithms for Dynamic Airborne Networks

    SBC: INFOBEYOND TECHNOLOGY LLC            Topic: AF09BT15

    The airborne network suffers from the limitations of highly constrained network capacity due to wireless link communication and intermittent connectivity among platforms. Information coding theory is a very new technology that is initially proposed for computer networks in 2001 and for ad hoc networks in 2006. The recent study shows it is able to increase the network capacity for mobile network to ...

    STTR Phase I 2010 Department of DefenseAir Force
  3. Instrumentation for hypersonic, air-breathing engines

    SBC: LUNA INNOVATIONS INCORPORATED            Topic: AF09BT32

    Luna Innovations Incorporated and CURBC (Calspan – University of Buffalo Research Center) are proposing to develop miniature, high-speed, high-temperature, fiber-optic pressure sensors that will fill the void that currently exists between ground and flight test instrumentation. The sensors small size (ø 0.007”) and high-sensitivity (better than ±0.01 psi) combined with a high-speed fiber-op ...

    STTR Phase I 2010 Department of DefenseAir Force
  4. Coupled Cluster Theory (CCT)

    SBC: DECISIVE ANALYTICS CORPORATION            Topic: AF09BT40

    Single-reference coupled cluster (SRCC) methods have revolutionized our ability to accurately predict molecular energies and properties. As new developments in theory and computer science extend the application of SRCC methods to larger and larger systems, advancements in coupled cluster methods for studying multi-reference systems have lagged far behind. DECISIVE ANALYTICS Corporation has teame ...

    STTR Phase I 2010 Department of DefenseAir Force
  5. High Temperature Metal RubberTM Sensors For Skin Friction Measurements

    SBC: NANOSONIC INC.            Topic: AF09BT32

    The Air Force Phase I STTR program would develop and demonstrate high temperature version of ‘sensor skins’ capable of multi-axis flow characterization on air breathing hypersonic engines. This would build upon NanoSonic’s successful demonstration of Metal Rubber™ transducer materials for the measurement of flow-induced skin friction and pressure at low temperatures and transonic and super ...

    STTR Phase I 2010 Department of DefenseAir Force
  6. Multi-Scale, Multi-Resolution Network Information Flow Monitoring and Understanding

    SBC: Intelligent Automation, Inc.            Topic: AF09BT15

    Communication networks can be viewed and analyzed as information flows, which can be better understood with practical design guidelines by capturing the complex interactions across essential network properties and tasks. Intelligent Automation Inc. and its subcontractor propose a novel unifying approach for multi-scale, multi-resolution network information flow modeling and analysis. We introduce ...

    STTR Phase I 2010 Department of DefenseAir Force
  7. III-V Based Focal Plane Arrays for Video-Rate Terahertz Imaging

    SBC: TRAYCER DIAGNOSTIC SYSTEMS, INC.            Topic: AF08T006

    Owing to a unique set of intellectual property and core expertise, this Phase II team, led by Traycer Diagnostic Systems, will build and characterize a packaged, 16x16 terahertz focal plane array (FPA) for broadband video-rate imaging at frequencies up to 1.3 THz. Traycer’s competitive advantage is based on its record-performing detectors, novel antennas, and array architectures that permit a d ...

    STTR Phase II 2010 Department of DefenseAir Force
  8. Plasmonic Cavity Spectroscopic Polarimeter

    SBC: ITN ENERGY SYSTEMS, INC.            Topic: AF08T027

    This Small Business Technology Transfer program will develop a spectroscopic polarimeter-on-a-chip using novel plasmonic resonant cavities sensitive to linear polarization over a narrow wavelength range. Spectral selection will be possible through geometric scaling, with this work concentrating on the visible to near infrared wavelength band. Dielectric gratings with subwavelength period will act ...

    STTR Phase II 2010 Department of DefenseAir Force
  9. Massively Parallel Micromachining with Ultrafast Lasers

    SBC: KAPTEYN-MURNANE LABORATORIES, INC            Topic: AF08T029

    We are proposing to develop a highly parallel, rapid prototyping system for the manufacture of microfluidic devices. In this phase II proposal we will build a complete system for making such devices for continued research on fieldable microfluidic systems for use in the military, and in hospitals. The project will also allow manufacturing in widely different materials, and structures, without an ...

    STTR Phase II 2010 Department of DefenseAir Force
  10. Efficient High-Power Tunable Terahertz Sources using Optical Techniques

    SBC: Microtech Instruments, Inc.            Topic: AF08T009

    The main objective of the proposed Phase II project is to leverage the technology of THz generation in resonantly-pumped quasi-phase-matched (QPM) GaAs structures, jointly developed by Stanford University and Microtech Instruments, Inc., and create a compact and power-efficient commercial THz source with a mW-level average power. This source will be continuously or step-tunable in the 0.5-3 THz ra ...

    STTR Phase II 2010 Department of DefenseAir Force
US Flag An Official Website of the United States Government