You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Gigawatt Nonlinear Transmission Lines (GW-NLTL)

    SBC: NumerEx            Topic: AF09BT14

    Nonlinear transmission lines offer new vistas in the generation of high power microwave wave (HPM) signals. All electromagnetic sources use an active medium to convert electrical energy to high frequency waves and ultra-wide band signals that can perform useful work. Traditional methods rely on electron beams for the active medium. Nonlinear transmission lines use nonlinear circuit elements to ...

    STTR Phase I 2010 Department of DefenseAir Force
  2. Graphene Production Tool

    SBC: STRUCTURED MATERIALS INDUSTRIES, INC.            Topic: AF08BT10

    In this STTR program, Structured Materials Industries, Inc. (SMI) and Cornell University are developing a flexible graphene film deposition system, for both research and production applications. In Phase I, our team demonstrated technical feasibility of scaling existing graphene process technology at Cornell to large wafer sizes. We demonstrated high quality graphene films by both silicon sublim ...

    STTR Phase II 2010 Department of DefenseAir Force
  3. High Energy Density Nanocomposite Based on Tailored Surface Chemistry

    SBC: TPL, INC            Topic: AF09BT05

    High energy density capacitors are required for practical implementation of GW-class pulse power loads. In response to this need, TPL has established unique dielectric and capacitor capabilities. Revolutionary materials, designs and manufacturing process have been developed for power sources that have potential for an order of magnitude reduction in mass and volume relative to current commercial ...

    STTR Phase I 2010 Department of DefenseAir Force
  4. High-Fidelity Simulation of Hypersonic Weakly Ionized Plasmas with Dynamically Adaptive Mesh

    SBC: CFD RESEARCH CORPORATION            Topic: AF09BT10

    The goal of the proposed research is to develop advanced computational tool for high-fidelity simulations of hypersonic non-equilibrium plasmas. Octree adaptive Cartesian mesh will be used for automatic mesh generation and dynamic mesh adaptation to plasma properties, particularly important for hypersonic flows with strong shock waves, transient laminar and turbulent domains with large gradients o ...

    STTR Phase I 2010 Department of DefenseAir Force
  5. High-order modeling of applied multi-physics phenomena

    SBC: HYPERCOMP INC            Topic: AF08T023

    The gap between research in numerical methods and popular commercial solvers in CFD and related areas has been gradually widening in the recent past, particularly in the realm of high order accurate algorithms. At HyPerComp we are advancing a suite of high order codes based on the discontinuous Galerkin (DG) technique that can be used in electromagnetics, fluid mechanics, MHD and radiative heat tr ...

    STTR Phase II 2010 Department of DefenseAir Force
  6. High Performance THz Detector Arrays Using Planar Metamaterial Absorbers

    SBC: DOLCE Technologies, LLC            Topic: AF09BT33

    DOLCE Technologies, LLC, in collaboration with Professor Rick Averitt’s research group at Boston University and Eric Shaner’s group at Sandia National Laboratories, will develop and deliver a high performance room-temperature Terahertz detector array solution based on metamaterial absorbers integrated with bi-material cantilevers. The metamaterial approach is frequency scalable and can operat ...

    STTR Phase I 2010 Department of DefenseAir Force
  7. High Speed Carbon Nanosheet Supercapacitors

    SBC: LUNA INNOVATIONS INCORPORATED            Topic: AF09BT05

    Using its novel carbon nanosheet technology, Luna Innovations will develop a Supercapacitor with the highest energy densities available in the microsecond to millisecond response times. Nanosheets are vertically aligned graphene sheets that can be grown on a wide variety of substrates without catalyst and have an open, accessible surface area that eliminate the resistance due to pores that cause ...

    STTR Phase I 2010 Department of DefenseAir Force
  8. High Speed Nano-Infrared Spectroscopy

    SBC: Anasys Instruments Corp.            Topic: AF08BT30

    Anasys Instruments in collaboration with University of Illinois Urbana-Champaign and subcontractor Dr. Konstantin Vodopyanov propose to develop the world’s first high speed nano infrared spectroscopy (“NanoIR”) capability. By combining and extending the capabilities of infrared spectroscopy and atomic force microscopy, this breakthrough platform will provide sub-100 nm chemical mapping capa ...

    STTR Phase I 2010 Department of DefenseAir Force
  9. High Temperature Metal RubberTM Sensors For Skin Friction Measurements

    SBC: NANOSONIC INC.            Topic: AF09BT32

    The Air Force Phase I STTR program would develop and demonstrate high temperature version of ‘sensor skins’ capable of multi-axis flow characterization on air breathing hypersonic engines. This would build upon NanoSonic’s successful demonstration of Metal Rubber™ transducer materials for the measurement of flow-induced skin friction and pressure at low temperatures and transonic and super ...

    STTR Phase I 2010 Department of DefenseAir Force
  10. High-throughput femtosecond fiber laser microstructuring system

    SBC: POLARONYX INC            Topic: AF08T029

    Based on our success in developing the world first commercial 100 micro Joule fs fiber laser system and our leading technology development in ultrashort pulsed fiber laser, PolarOnyx and University of California at Davis proposes, for the first time, a fs-high power (100 W), high energy (>100 uJ) and high repetition rate (MHz) fiber laser microstructuring system to meet with the requirement of the ...

    STTR Phase II 2010 Department of DefenseAir Force
US Flag An Official Website of the United States Government