You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Development of Advanced Energetic Oxidizers for Solid Propellant applications.

    SBC: FLUOROCHEM, INC.            Topic: N09T017

    The objective of this program is to design advanced energetic oxidizers superior to ammonium perchlorate (AP), develop methods for their preparation, and characterize the products. The overall goal of the Phase II program with options is to make the technology ready for commercialization

    STTR Phase II 2010 Department of DefenseNavy
  2. Development of an EO/IR Common Aperture Modular Multifunction Sensor

    SBC: ULTIMARA INC            Topic: N11AT024

    The goal of this program is to develop and fabricate an ultra-low Size, Weight, and Power (SWAP) integrated electro-optic beam-steering technology that utilizes ultra-fast electro-optic active plasmonic waveguide arrays to achieve very wide scanning angle with diffraction limited beam quality. We develop a very scalable electro-optic plasmonic waveguides array that provides the electro-optic pha ...

    STTR Phase II 2013 Department of DefenseNavy
  3. Development of High-Efficiency, High Power Electron Beam Accelerator Technologies

    SBC: Jp Accelerator Works            Topic: N10AT023

    This research investigates the feasibility of improving operational readiness, reliability and availability of high current cryogenic rf linear accelerators using a cryogenic compatible resonant coupling technique to couple all of the accelerator sections together, including any room temperature portion. This technique guarantees a single resonant frequency for the system insuring rapid turn on. T ...

    STTR Phase I 2010 Department of DefenseNavy
  4. Development of Low-Cost Augmented Reality Head Mounted Display

    SBC: SA PHOTONICS, LLC            Topic: N09T031

    SA Photonics, in conjunction with our teammates at the University of Arizona, have developed LARS, the low-cost augmented reality system. This system is a see-through HMD used for training and simulation. LARS was designed using an innovative freeform prism combiner which is small, lightweight and has very little obscuration of the outside world. We have partnered with Rockwell Collins Optronics ( ...

    STTR Phase II 2010 Department of DefenseNavy
  5. Development of Magnetostrictive Energy Harvesting of Mechanical Vibration Energy

    SBC: Applied Physical Sciences Corp.            Topic: N10AT020

    Applied Physical Sciences and the University of Maryland propose to develop a magnetostrictive transducer that harvests electrical energy from shipboard machinery while simultaneously suppressing vibration to improve the ship’s stealth characteristics and thereby improving the performance of hull mounted sonar systems. Analysis performed during the Base Effort will provide an initial design spec ...

    STTR Phase I 2010 Department of DefenseNavy
  6. Development of Navy Wave Rich Collaboration for Command and Control

    SBC: SOLUTE            Topic: N10AT045

    The SOLUTE team’s Phase I technical approach consists primarily of a feasibility study assessing the viability of a Navy implementation of the algorithms, standards, and protocols that comprise Google's Wave technology. Of specific concern is Wave’s ability to handle varying bandwidth and DIL communications channels associated with Navy platforms. While computer science research in the field o ...

    STTR Phase I 2010 Department of DefenseNavy
  7. Development of Navy Wave Rich Collaboration for Command and Control

    SBC: G2 Software Systems, Inc.            Topic: N10AT045

    G2 Software Systems (G2SS) proposes to explore all features of Google Wave to develop practices and extensions to support Navy Command and Control (C2) processes. The C2 practices and extensions include tools for collaborative problem analysis, collaborative planning, knowledge sharing, knowledge awareness (searching and registering for critical information requirements), knowledge context (includ ...

    STTR Phase I 2010 Department of DefenseNavy
  8. Development of Surface Reaction Mechanism for C-SiC-SiO2-Rubber Composite Oxidation in Extreme Oxidizing Condition

    SBC: CFD RESEARCH CORPORATION            Topic: N10AT005

    The purpose of this STTR is to develop comprehensive detailed kinetics for oxidation of C-SiC-SiO2-rubber in extreme oxidizing environment. This material is used as a coating on the outer surface of Navy weapon systems. In order to predict the fate of this material under extreme conditions and mitigate the degradation of the coating, a comprehensive oxidation mechanism is required. In Phase I, CFD ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Dynamic Physical/Data-Driven Models for System-Level Prognostics and Health Management

    SBC: QUALTECH SYSTEMS, INC.            Topic: N10AT009

    The proposed effort leverages the capabilities of data-driven and physics of failure (PoF) based prognostic techniques for electronic systems by combining them within a hybrid approach. Data-driven and PoF-based techniques both have shortcomings; combining them into a hybrid framework allows using their capabilities in a complementary fashion, and thereby providing a reliable way of prognostics an ...

    STTR Phase I 2010 Department of DefenseNavy
  10. EMitter LOCcator (EMLOC) System For Emitter Detection and Localization

    SBC: Coherent Navigation, Inc.            Topic: N11AT012

    We propose to build an emitter localization and detection system that can geolocate signals in the 800-2400 MHz range. The system can be rapidly-deployed, provide accurate emitter locations, deals with many-emitter problem explicitly, and can find low-power emitters.

    STTR Phase II 2013 Department of DefenseNavy
US Flag An Official Website of the United States Government