You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. An Immersed Boundary Framework for Topology Optimization of Nonlinear Thermoelastic Structures with Internal Radiation

    SBC: SPECTRAL ENERGIES LLC            Topic: AF17AT015

    Thermoelastic structures poses a critical challenge to designers due to the inherent proportionality of the thermal loading on the structural thickness. This is further exacerbated by structural nonlinearity where any out-of-plane deformation further increases the effective loading on the structure. As a result of this, conventional design optimization procedures, which are typically based on line ...

    STTR Phase I 2017 Department of DefenseAir Force
  2. High-Speed Measurements of Dynamic Flame Stabilization Processes in High-Pressure Combustion Systems

    SBC: SPECTRAL ENERGIES LLC            Topic: AF16AT13

    The Phase-II research is a natural extension and a significant advancement over the Phase-I research, which has successfully demonstrated high-speed, burst-mode, polarization-based, dual-plane, stereoscopic PIV measurements synchronized with OH-PLIF imaging of turbulent swirling combustion in a generic gas-turbine combustor with and without acoustic forcing. We propose to conduct high-speed, burst ...

    STTR Phase II 2017 Department of DefenseAir Force
  3. Robust Ionic Liquid Electrolytes for Reversible Electroplating of Mirrors

    SBC: Faraday Technology, Inc.            Topic: AF16AT20

    This proposal addresses the need for development of room-temperature ionic liquids (RTILs) for use in electrolytes for reversibly electroplating films with specific optical, emissive and electrical properties on demand. Target applications for these electrolytes are devices using reversible electroplating for tuning/regenerating functional surfaces, such as mirrors or thermal emitters, deployed on ...

    STTR Phase II 2017 Department of DefenseAir Force
  4. Electrotextile Systems for Human Signatures Monitoring

    SBC: MANTEL TECHNOLOGIES INC            Topic: DHA17A001

    Investments by the Department of Defense (DOD) have led to the development and demonstration of electronic textiles capable of transforming traditional textile systems into wearable power and data systems. The Defense Health Agency (DHA) has identified an opportunity to leverage advancements in smart garment systems for military personnel to aid in the prediction in performance declines and healt ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  5. Extending Molecular Simulation to Grain Scale for Simulating Response of Energetic Material Under High Strain Rate and Shock Loading

    SBC: CFD RESEARCH CORPORATION            Topic: AF17AT023

    High Velocity Penetrator Weapons experience severe stress in terms of high frequency vibration and shock during launch, flight, and on impact. The extreme conditions have significant impact on the survivability of the weapon due to damage of the energetic material and fuze compartment. Molecular dynamics is often used to understand the effect of external shock on the material. However, molecular ...

    STTR Phase I 2017 Department of DefenseAir Force
  6. Coupled Multi-Physics Tool for Analysis of Structural Profile Disruption Effects of Aerovehicles

    SBC: CFD RESEARCH CORPORATION            Topic: AF17AT025

    High speed air vehicles, already operating at material strength performance limits, are at significant risk when subjected to additional localized heating from sources such as directed energy. This localized heating may result in material softening, pitting and burn through causing structural damage and alteration of the structural profile. This damage can disrupt the aerodynamic performance and ...

    STTR Phase I 2017 Department of DefenseAir Force
  7. Development of Adaptive Closure Models for Large Eddy Simulations of Lean Blow-Out Conditions

    SBC: CFD RESEARCH CORPORATION            Topic: AF16AT14

    The objective of the proposed Phase II effort is to establish fundamental understanding of combustion-physical mechanisms leading to blowout, the critical evaluation of model limitations in predicting these blowout processes and the development of an improved combustion model to enable the prediction of lean blowout (LBO) in swirl-stabilized combustors. For this, high-resolution numerical simulati ...

    STTR Phase II 2017 Department of DefenseAir Force
  8. Novel Mixed-mode TCAD-Commercial PDK Integrated Flow for Radiation Hardening By Design

    SBC: CFD RESEARCH CORPORATION            Topic: DTRA16A003

    Cost-effective application of advanced commercial electronics technologies in DoD space systems requires early development of radiation-hardened-by-design (RHBD) techniques, and use of simulations is critical to the efficiency of this process. CFDRC has developed an integrated, mixed-mode simulation approach allowing their NanoTCAD device physics simulator to interface with commercial circuit simu ...

    STTR Phase I 2017 Department of DefenseDefense Threat Reduction Agency
  9. Computationally Efficient, Accurate and Uncertainty Characterized Chemical Kinetics for Hydrocarbon Fuels

    SBC: CFD RESEARCH CORPORATION            Topic: AF17AT004

    TBD

    STTR Phase I 2017 Department of DefenseAir Force
  10. Measurement and Modeling of Surface Coking in Fuel-Film Cooled Liquid Rocket Engines

    SBC: CFD RESEARCH CORPORATION            Topic: AF15AT21

    Designing an efficient and effective film cooling system to protect critical components of modern rocket engines requires a significant number of problems and challenges to be addressed. Complicating the already difficult hydrodynamic challenges, thermal and/or catalytic cracking of hydrocarbon fuels is always accompanied with coke formation. Coke deposits on combustor and nozzle walls reduce heat ...

    STTR Phase II 2017 Department of DefenseAir Force
US Flag An Official Website of the United States Government