You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. MEMS Based Solutions for an Integrated and Miniaturized Multi-Spectrum Energy Harvesting and Conservation System

    SBC: Radiance Technologies, Inc.            Topic: T301

    The objective of this proposal is to integrate three unique energy harvesting technologies utilizing our existing research strengths that will be of interest and utility to NASA applications and environmental conditions. By developing multiple technologies, NASA will be able to harvest energy from multiple waste energy sources, namely environmental vibrations, thermal energy, and solar flux. These ...

    STTR Phase II 2014 National Aeronautics and Space Administration
  2. An LED-Based, Laboratory-Scale Solar Simulator for Advanced 3, 4, 5 & 6 Junction Space Photovoltaic Power Systems

    SBC: Angstrom Designs, Inc.            Topic: T201

    As a result of significant technical effort, the Phase I was successful in delivering a solar simulator prototype that not only proved the initial concept but will significantly reduce future risk and increase our ability to deliver a fully-functional solar simulator in Phase II. The proposed innovation is an LED-based, laboratory-scale, solar simulator. The proposed innovation simulates AM0 re ...

    STTR Phase II 2014 National Aeronautics and Space Administration
  3. Autonomous Onboard Failsafe System to Mitigate Common Failure Modes of Experimental SUAS

    SBC: PRIORIA ROBOTICS HOLDINGS, INC.            Topic: T501

    Automation improvements are needed to reduce the dependency on human reflexes and unreliable data links. Modern autopilots are capable of detecting loss-of-GPS and loss-of-communications. There is no mechanism for the aircraft to autonomously return to a safe landing zone under these conditions. Furthermore, experience has shown that existing controllers are not good at detecting bad position data ...

    STTR Phase II 2014 National Aeronautics and Space Administration
  4. Conjugate Etalon Spectral Imager (CESI) & Scanning Etalon Methane Mapper (SEMM)

    SBC: Wavefront            Topic: T803

    Development of the CESI focal plane and optics technology will lead to miniaturized hyperspectral and SWIR-band spectral imaging instrumentation compatible with CubeSat and other nanosat platforms. The project will implement the technology by developing a CubeSat-compatible SEMM instrument for global mapping of atmospheric methane concentrations. Specific Phase I technical objectives include: - ...

    STTR Phase II 2014 National Aeronautics and Space Administration
  5. Particle Flow Physics Modeling for Extreme Environments

    SBC: CFD RESEARCH CORP            Topic: T403

    The liberation of particles induced by rocket plume flow from spacecraft landing on unprepared regolith of the Moon, Mars, and other destinations poses high mission risks for robotic and human exploration activities. This process occurs in a combination of "extreme environments" that combine low gravity, little or no atmosphere, rocket exhaust gas flow that is supersonic and partially rarefied, an ...

    STTR Phase II 2014 National Aeronautics and Space Administration
  6. High-Fidelity Prediction of Launch Vehicle Lift-off Acoustic Environment

    SBC: CFD RESEARCH CORP            Topic: T101

    Launch vehicles experience extreme acoustic loads during liftoff driven by the interaction of rocket plumes and plume-generated acoustic waves with ground structures. Currently employed predictive capabilities are too dissipative to accurately resolve the propagation of waves throughout the launch environment. Higher fidelity non-dissipative analysis tools are critically needed to design mitigatio ...

    STTR Phase II 2014 National Aeronautics and Space Administration
  7. Vertical GaN Substrates

    SBC: Sixpoint Materials, Inc.            Topic: DEFOA0000941

    SixPoint Materials will create low-cost, high-quality vertical gallium nitride (GaN) substrates using a multi-phase production approach that employs both hydride vapor phase epitaxy (HVPE) technology and ammonothermal growth techniques to lower costs and maintain crystal quality. Substrates are thin wafers of semiconducting material needed for power devices. In its two-phase project, SixPoint Mate ...

    STTR Phase II 2014 Department of EnergyARPA-E
  8. Epitaxial GaN on flexible metal tapes for low-cost transistor devices

    SBC: IBEAM MATERIALS, INC.            Topic: 1

    GaN-based devices are the basis of a variety of modern electronics applications, especially in optoelectronics and high-frequency / high-power electronics. These devices are based on epitaxial films grown on single-crystal wafers. The single-crystal wafer substrates are limiting because of their size, expense, mechanical properties and availability. If one could make GaN-based devices over large a ...

    STTR Phase II 2014 Department of EnergyARPA-E
  9. Closed-Loop Control of the Thermal Stir Welding Process to Enable Rapid Process / Part Qualification

    SBC: Keystone Synergistic Enterprises, LLC            Topic: T901

    Thermal Stir Welding (TSW) provides advancement over the more conventional Friction Stir Welding (C-FSW) process because it separates the primary processes variables thereby allowing independent control of metal stirring and forging from the stir zone temperature. However, the feedback for precise control of the stir zone temperature, and hence the process parameters to sustain that temperature wi ...

    STTR Phase II 2013 National Aeronautics and Space Administration
  10. Materials and Structures Optimization / Process Development for the Mega-ROSA / ROSA Solar Array

    SBC: Deployable Space Systems, Inc.            Topic: T301

    Deployable Space Systems, Inc. (DSS), in collaboration with the University of California, Santa Barbara (UCSB), Department of Mechanical Engineering, will focus the proposed NASA STTR Phase 2 program on the materials optimization, structures optimization, creep / relaxation phenomena characterization and analytical modeling, and manufacturing process optimization/development for the Mega-ROSA/ROSA ...

    STTR Phase II 2013 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government