You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. CIM-MIAS (Cyber Information Management and Mission Impact Analysis System)

    SBC: Modus Operandi, Inc.            Topic: AF18CT002

    The DoD lacks an multi-level security (MLS) cyber information management (CIM) system capable of collecting, sharing and disseminating cyber information containing threats, system vulnerabilities and mission impacts and risks for systems operating at multiple security levels. A system that can securely collect and persist this information from various systems operating at various security levels i ...

    STTR Phase I 2019 Department of DefenseAir Force
  2. Closed-Loop Feedback Control for Transcranial Direct Current Stimulation, Phase II.

    SBC: QUANTUM APPLIED SCIENCE & RESEARCH INC            Topic: AF17BT002

    Human analysts are presented with ever-increasing amounts of data to process, taxing the limitations of human cognitive capacity. This cognitive overloading leads to increased likelihood of errors and accidents, with costly consequences in mission critical operations. Consequently, there is a rising demand for more efficient processing of increasingly large amounts of intelligence. Transcranial di ...

    STTR Phase II 2019 Department of DefenseAir Force
  3. Learner Engagement and Motivation to Learn Assessment and Monitoring System

    SBC: Design Interactive, Inc            Topic: AF17AT009

    Training can now be delivered on a large scale through emerging platforms, but training must be engaging to be effectively utilized. Key to providing training that makes a difference in the field is an understanding of how to induce high levels of engagement during learning and the ability to objectively assess engagement in real-time so that interventions can be tailored during training to optimi ...

    STTR Phase II 2019 Department of DefenseAir Force
  4. Semi-Analytic Fresnel Propagation Simulation

    SBC: MZA ASSOCIATES CORP            Topic: AF18BT004

    Wave-optics simulations are critical tools for analysis of laser directed energy systems. The primary method for conducting these simulations is to evaluate the Fresnel diffraction integral using the angular spectrum method based on the fast Fourier transform (FFT). While FFTs are considered computationally efficient, their use in the Fresnel integral results in difficult grid constraints includin ...

    STTR Phase I 2019 Department of DefenseAir Force
  5. Mission and Information Assurance through Cyber Atomics

    SBC: SECURBORATION INC            Topic: AF17BT004

    Cyber Risk Assessments for Threatened Environments (CRATE) is a system that produces actionable, mission-level alerts when anomalous behaviors indicative of cyber-attack are discovered within deployed mission-critical cyber-systems. CRATE is particularly relevant to deployment scenarios involving third-party infrastructure, such as deployment to a Platform as a Service (PaaS) provider or other clo ...

    STTR Phase II 2019 Department of DefenseAir Force
  6. Lasers Based on Gas or Liquid Filled Hollow-Core Photonic Crystal Fibers

    SBC: SA Photonics, Inc.            Topic: AF18BT015

    We propose a compact, monolithic, power scalable, hollow core fiber-gas laser emitting in the atmospheric transmission region in the mid-IR. The proposed optically pumped fiber-gas laser system is efficient, has a small footprint as well has a broad spectral coverage in the mid-IR. Due to the unique approach employed, the proposed technology allows generation of mid-IR output with varying pulse re ...

    STTR Phase I 2019 Department of DefenseAir Force
  7. Wave-Optic Propagation Computation Enabled by Machine Learning Algorithms (WOPA)

    SBC: Luminit LLC            Topic: AF18BT004

    To address the U.S. Air Force need for Developing innovative wave-optics Propagation methods to model laser systems that are faster, efficient and more accurate, Luminit, LLC, and University of Southern California (USC) propose to develop Wave-Optic Propagation Computation Enabled by Machine Learning Algorithms (WOPA). The proposed algorithms will be based on cutting off redundant frequencies upon ...

    STTR Phase I 2019 Department of DefenseAir Force
  8. Regional Radio Frequency Attenuation and Interference Monitor (RF-AIM)

    SBC: Silvus Technologies, Inc.            Topic: AF18BT005

    Silvus Technologies and the University of California Los Angeles propose a system design and a rapid development path for the Regional Radio Frequency Attenuation and Interference Monitor, or ‘RF-AIM’. RF-AIM is intended to provide continuous wide area awareness of RF spectrum availability in the presence of arbitrary interference and attenuation from natural or man-made causes. The t ...

    STTR Phase I 2019 Department of DefenseAir Force
  9. Multiphysics Modeling of Dynamic Combustion Processes Using Pareto-Efficient Combustion Framework

    SBC: STREAMLINE NUMERICS, INC.            Topic: AF18BT010

    The objective is to develop zonal multi-physics capability for turbulent combustion simulations. The foundation of the proposed work is a novel Pareto-Efficient Combustion (PEC) framework for fidelity-adaptive combustion modeling. The PEC model utilizes a combustion submodel assignment, combining the low-cost flamelet-based models with the more expensive finite rate chemistry models where necessar ...

    STTR Phase I 2019 Department of DefenseAir Force
  10. Efficient and Faster Methods for Performing General Wave-Optics Propagation

    SBC: TAU TECHNOLOGIES LLC            Topic: AF18BT004

    We will develop hybrid wave propagation approach that implements FFT and EMA (Efficient Matrix Algorithms) propagators in a fashion that is transparent to the user but insures the highest efficiency and accuracy for a given propagation problem. We will develop rules to decide which propagation approach is ideal for a given situation. The propagation algorithms will be coded in Vulkan/CUDA and C++ ...

    STTR Phase I 2019 Department of DefenseAir Force
US Flag An Official Website of the United States Government