You are here
Award Data
The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.
Download all SBIR.gov award data either with award abstracts (290MB)
or without award abstracts (65MB).
A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.
The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.
-
Surface plasmon enhanced thin-film photovoltaic systems
SBC: ITN ENERGY SYSTEMS, INC. Topic: AF09BT39This Small Business Technology Transfer Research phase I program will develop a new class of surface plasmon enhanced photovoltaic devices that exhibit increased current collection. Photon management, the manipulation of the incident optical field to increase the probability that a photon is absorbed in the active region of the cell, is critical to the development of next generation thin film sol ...
STTR Phase I 2010 Department of DefenseAir Force -
VLSI Compatible Silicon-on-Insulator Plasmonic Components
SBC: ITN ENERGY SYSTEMS, INC. Topic: AF08BT18This Small Business Technology Transfer Phase I project will develop ultradense, low-power plasmonic integration components and devices for on-chip manipulation and processing of optical signals. Both passive and active components will be studied. Detailed performance predictions will be obtained through finite element modeling (FEM) of the harmonic Maxwell’s equations. The FEM provides detai ...
STTR Phase I 2010 Department of DefenseAir Force -
Narrowband microbolometer arrays for infrared chemical sensing
SBC: ITN ENERGY SYSTEMS, INC. Topic: A10AT023This Small Business Technology Transfer Research program will develop narrow band plasmonic resonant cavity filters with integrated microbolometer sensors operating in the long wave infrared (LWIR) atmospheric transmission band for IR absorption measurements of low concentration chemicals. IR spectroscopy can identify a wide range of contaminants, including chemical/biological warfare agents, exp ...
STTR Phase I 2010 Department of DefenseArmy -
Plasmonic Cavity Spectroscopic Polarimeter
SBC: ITN ENERGY SYSTEMS, INC. Topic: AF08T027This Small Business Technology Transfer program will develop a spectroscopic polarimeter-on-a-chip using novel plasmonic resonant cavities sensitive to linear polarization over a narrow wavelength range. Spectral selection will be possible through geometric scaling, with this work concentrating on the visible to near infrared wavelength band. Dielectric gratings with subwavelength period will act ...
STTR Phase II 2010 Department of DefenseAir Force -
Wideband Metamaterial Antennas Integrated into Composite Structures
SBC: JEM ENGINEERING, LLC Topic: N10AT021A broadband antenna, having more than a 100:1 bandwidth,is integrated with a high impedance surface that is compatible with the manufacturing processes associated with with Navy topside panel constructions and marine vehicle armor. The high impedance surface (also known as an artificial magnetic conductor, or AMC) can be tuned to discrete frequency bands using voltage-variable capacitors and the o ...
STTR Phase I 2010 Department of DefenseNavy -
High Efficiency Gain Media for Eye-Safer 1.55 µm Ultrafast Fiber Amplifiers
SBC: Kapteyn-Murnane Laboratories, Inc. Topic: N10AT012We propose to design a high average power Er:Fiber ultrafast laser system which is pumped at 14xxnm, and at the same time solve other problems related to ultrashort pulses in fiber lasers. The advantage of using 14xxnm pumping is the reduction of the standard quantum defect from 37% to 5%, thus greatly reducing the thermal load on the system, which makes it inherently more efficient. We also inten ...
STTR Phase I 2010 Department of DefenseNavy -
Massively Parallel Micromachining with Ultrafast Lasers
SBC: Kapteyn-Murnane Laboratories, Inc. Topic: AF08T029We are proposing to develop a highly parallel, rapid prototyping system for the manufacture of microfluidic devices. In this phase II proposal we will build a complete system for making such devices for continued research on fieldable microfluidic systems for use in the military, and in hospitals. The project will also allow manufacturing in widely different materials, and structures, without an ...
STTR Phase II 2010 Department of DefenseAir Force -
Recovery Act- Development of a Fiber Based Source of High Average Power Ultrafast Pulses at 2.0 Microns
SBC: Kapteyn-Murnane Laboratories, Inc. Topic: 04dBright coherent light sources in the soft x-ray region of the spectrum are useful for a variety of applications of interest to DOE in the basic sciences, nanoscience and biology, and for technological applications. At Free-Electron Laser Facilities, peak power output of the x-ray pulses is enhanced by using a mid-infrared laser pulse instead of a near-infrared pulse. The current front end for mid- ...
STTR Phase II 2010 Department of Energy -
STTR Phase I: Controlled Phase Separation for Graphic Smart Card Display
SBC: KENT DISPLAYS, INC. Topic: MMThis Small Business Technology Transfer Phase I project shall develop and model phase separating materials for passively-driven graphical displays, which are needed for smart cards that can display graphic images. Nearly all consumer credit cards used today have no functional display. Since the numbers and security codes on the cards cannot be changed, fraudulent use is estimated to be as high as ...
STTR Phase I 2010 National Science Foundation -
STTR Phase II: Active Fiber Optic Sensor Array for Cryogenic Fuel Monitoring and Management
SBC: Lake Shore Cryotronics, Inc. Topic: EOThis Small Business Technology Transfer (STTR) Phase II project will develop a multi-functional active fiber Bragg grating sensor technology for the monitoring and management of cryogenic fuel such as liquid hydrogen and liquefied natural gas. The proposed technology uses in-fiber light to actively adjust sensor temperature, which will drastically improve responsivity and sensitivity of fiber sens ...
STTR Phase II 2010 National Science Foundation