You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Development of a Computational Method for Prediction of After-Burning Effect

    SBC: BUSA Engineering Consulting            Topic: N10AT002

    This proposal is being submitted in response to the solicitation topic N10A-T002 (Development of a Computational Method for Prediction of After Burning Effect) by BUSA Engineering Consulting (Dr. Jianghui Chao) in collaboration with University of Florida (PI: Prof. S. Balachandar). The overall objective of the proposed effort is to contribute to national defense and security by advancing the state ...

    STTR Phase I 2010 Department of DefenseNavy
  2. Advanced Materials for the Design of Lightweight JP5/JP8/DS2 Fueled Engines for Unmanned Aerial Vehicles (UAVs)

    SBC: Northwest Uld, Inc.            Topic: N10AT001

    Northwest UAV Propulsion Systems proposes using our purpose built heavy fuel engine designed and built in the USA for small unmanned aerial systems in the tier 2 & 3 class. We will be adding a lightweight ceramic material set combined with FEA (Finite Element Analysis) and heavy fuel atomizer (IRAD Project) to create a lightweight engine for a SUAS or STUAS class UAVs. The Ceramic material set is ...

    STTR Phase I 2010 Department of DefenseNavy
  3. Guided Realistic Individualized Practice (GRIP)

    SBC: SOAR TECHNOLOGY INC            Topic: N09T028

    The US Navy is undertaking a Total Force Transformation to develop a more agile, deployable, and capable force to meet the challenges of 21st century conflicts. The adaptive expertise required by the Total Force demands innovative and evidence-based approaches to instruction, training, and assessment that enable the development of both routine and adaptive skills. Given the costs of developing tra ...

    STTR Phase II 2010 Department of DefenseNavy
  4. High-Fidelity Simulation of Dynamic Weakly Ionized Plasma Phenomena

    SBC: TTC TECHNOLOGIES, INC.            Topic: AF09BT10

    A computational and experimental research program is proposed to develop and validate a high-fidelity 3D non-equilibrium magnetohydrodynamic (MHD) plasma compressible flow code for advanced aerospace applications. The code will incorporate a physics-based kinetic model of air plasma with non-equilibrium conductivity sustained by an externally applied electric field. The model will include electron ...

    STTR Phase I 2010 Department of DefenseAir Force
  5. Graded-Composition Refractory Coatings for Protection of Cu-Rails for Electromagnetic Launchers

    SBC: Engineered Coatings, Inc.            Topic: N10AT025

    The Navy is developing an electromagnetic (EM) launcher for long-range naval surface-fire-support. Severe operating conditions of the EM system place stringent requirements for materials, including high current and magnetic fields, high temperatures, contact with liquid metals, high stress/gouging from balloting contacts and high-speed-sliding electrical-contact with an Al armature. Engineered Coa ...

    STTR Phase I 2010 Department of DefenseNavy
  6. Mathematically Rigorous Methods for Determining Software Quality

    SBC: GRAMMATECH INC            Topic: N10AT035

    Software is rarely written entirely from scratch. Typically, third-party commercial off-the-shelf (COTS) components are integrated into larger software systems used both in the commercial sector and in critical infrastructure. Third-party components often come in binary form, e.g., as dynamically linked libraries, Active X controls, or plain executables. That is, the source code for those componen ...

    STTR Phase I 2010 Department of DefenseNavy
  7. An Advanced Undersea Lithium Ion Management System (U-LIMS)

    SBC: Impact Technologies            Topic: N10AT013

    Impact Technologies, in collaboration with Penn State Applied Research Laboratory, proposes to develop an advanced Battery Monitoring and Management System (BMMS) for lithium-ion battery packs that ensures adequate, safe, and reliable operation. This system will focus on real time diagnostics, prediction of catastrophic failure, and risk assessment for individual cells in high power applications. ...

    STTR Phase I 2010 Department of DefenseNavy
  8. Magnetostrictive Vibration Energy Harvester (MAVEN)

    SBC: Impact Technologies            Topic: N10AT020

    Impact Technologies, in cooperation with Dr. Mohammed Daqaq from Clemson University, propose to develop a magnetostrictive materials based device for harvesting energy from mechanical vibration. The energy harvesting device will harness power from ship-hull vibrations in order to power sensing devices. This technology will be a key enabler for improved structural and machinery health management. K ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Advanced Software Tools for Lithium Ion Battery Risk Assessment (LIBRA)

    SBC: Impact Technologies            Topic: N10AT014

    Impact Technologies, in collaboration with the Georgia Tech Center for Innovative Fuel Cell and Battery Technologies, proposes to develop tools for Lithium Ion Battery Risk Assessment (LIBRA). These tools will allow the Navy to analyze proposed Li-Ion battery designs and assess the overall risk to the platform in the event of failure in a single cell. The tool will also predict the effects of a ca ...

    STTR Phase I 2010 Department of DefenseNavy
  10. High Efficiency Gain Media for Eye-Safer 1.55 µm Ultrafast Fiber Amplifiers

    SBC: Kapteyn-Murnane Laboratories, Inc.            Topic: N10AT012

    We propose to design a high average power Er:Fiber ultrafast laser system which is pumped at 14xxnm, and at the same time solve other problems related to ultrashort pulses in fiber lasers. The advantage of using 14xxnm pumping is the reduction of the standard quantum defect from 37% to 5%, thus greatly reducing the thermal load on the system, which makes it inherently more efficient. We also inten ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government