You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Simulation Tool for Modeling Weakly Ionized Plasma

    SBC: TECH-X CORPORATION            Topic: AF09BT10

    We propose to develop a commercial weakly ionized plasma modeling capability based off of Tech-X’s high energy density plasma fluid code TxFluids. The new additions will be able to be used to model hypersonic vehicle physics including shock waves, plasma chemistry and innovative techniques for blackout mitigation and hypersonic vehicle control through the application of electric and/or magnetic ...

    STTR Phase I 2010 Department of DefenseAir Force
  2. Simultaneous Multiple Object Detection System

    SBC: Semquest, Inc.            Topic: MDA16T006

    An advanced hit detection technology is needed for MDA that can report impacts at hyper-velocities and at multiple hit locations. We present a technology with a high level of performance that leverages decades of hit technology experience and utilizes existing technologies developed under previous efforts. Our technology offers a low latency non-interpolated direct indicator of multiple hit locati ...

    STTR Phase II 2018 Department of DefenseMissile Defense Agency
  3. Situational Awareness as a Man-Machine Map Reduce Job

    SBC: SOAR TECHNOLOGY INC            Topic: N13AT024

    Improving situational awareness and accuracy of decisions in complex missions relying on streaming open-source data requires scalable information extraction and fusion in collaboration between Man and Machine reasoning. SoarTech, with its proven track-record of basic and applied research and transition into actual deployment, will bring forward advanced imagery and text processing technology integ ...

    STTR Phase I 2013 Department of DefenseNavy
  4. Skin-Friction Sensor for Hypersonic Flows

    SBC: MICHIGAN AEROSPACE CORP            Topic: AF09BT32

    Michigan Aerospace Corporation proposes to develop an optical MEMS based skin friction sensor specifically designed for hypersonic applications. This instrument will be capable of shear stress resolutions as small as 0.01 Pa, have a high dynamic range, and data rates in excess of 100 Hz. The sensor will be compact and tolerant of the extreme environmental conditions of hypersonic propulsion test f ...

    STTR Phase I 2010 Department of DefenseAir Force
  5. Small Team Command, Control, Communications and Situational Awareness (C3SA), SOCOM08-001

    SBC: CEEBUS TECHNOLOGIES, LLC            Topic: SOCOM08001

    SOF combat swimmers have a need for the continuous monitoring of each others relative position while diving and for the capability of being able to communicate with each other to help establish a common operational picture (COP).The C3SA system was previously developed under SBIR Topic SOCOM08-001 thru the receipt of both Phase I and Phase II SBIR awards.The C3SA established a stand-alone network ...

    STTR Phase II 2018 Department of DefenseSpecial Operations Command
  6. Soft and Elastomeric Intramuscular Electrode with Therapeutic Delivery Capability

    SBC: TDA RESEARCH, INC.            Topic: A13AT019

    Approximately 5-6% of military injuries involve some form of major peripheral nerve injury with little chance of spontaneous healing. Currently these injuries lead to major impairment of voluntary muscle function in the limbs and extremities, making tasks of walking, reaching, grasping, etc. very difficult or impossible for many patients. It is not enough to focus therapeutic treatment on the se ...

    STTR Phase I 2013 Department of DefenseArmy
  7. Software Defined Multi-Channel Radar Receivers for X-band Radars

    SBC: DGNSS Solutions, LLC            Topic: MDA09T003

    The primary objective of the proposed research is to develop proof of concept of a software programmable X-Band radar system using low cost antenna array technology with digital beamforming architecture based on multiple receiver channels. The performance objectives will aim at a minimum of 400 MHz instantaneous bandwidth and a minimum instantaneous dynamic range of 52 dB. The objective of the t ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  8. Software System Reliability Analysis

    SBC: GRAMMATECH INC            Topic: OSD06SP4

    System reliability is a fundamental requirement for safety-critical weapons systems. A key challenge is identifying reliability problems early so that they can be fixed quickly and cheaply. Reliability problems are often integration problems: integration often reveals that flaws that seemed minor in isolated components but lead to serious system-wide reliability problems. The combination of static ...

    STTR Phase II 2010 Department of DefenseArmy
  9. Solar Blind MgZnO Photodetectors

    SBC: AGNITRON TECHNOLOGY, INC.            Topic: A13AT006

    This Phase I program is focused on enhancement of the performance of MgZnO based solar blind detectors. MgZnO alloys have superior optoelectronic properties with bandgaps suitable for solar blind detection. Issues related to doping and miscibility will be addressed. This will involve the use of advanced MOCVD and MBE growth techniques and consideration of both Schottky and p-n junction devices. No ...

    STTR Phase I 2013 Department of DefenseArmy
  10. Solar Blind MgZnO Photodetectors

    SBC: AGNITRON TECHNOLOGY, INC.            Topic: A13AT006

    This project address the fabrication of solar blind detectors from the MgZnO material system. Both MBE and MOCVD material growth techniques will be used for deposition of the required material layers. Simulation software we be used to aid in the design of the photodetector structure. Devices will be fabricated from the grown structures and their electrical and optical characteristics determined.

    STTR Phase II 2014 Department of DefenseArmy
US Flag An Official Website of the United States Government