You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Optimization of Sodium Guide Star Return using Polarization and/or Modulation Control

    SBC: APPLIED OPTIMIZATION, INC.            Topic: AF19AT008

    The research objective of the proposed work is to increase the efficiency of the laser return of a Sodium Guide Star Laser (SGSL) reflected off the sodium layer for increased reliability and applicability of the artificial guide star technique. During Phase I, we will demonstrate the concept of maximizing the SGSL signal returns using numerical simulations that account for the effects of atmospher ...

    STTR Phase I 2019 Department of DefenseAir Force
  2. Advanced Diagnostic for Performance and Combustion Characterization in Rotational Detonation Rocket Engine (RDRE)

    SBC: Exo-Atmospheric Technologies LLC            Topic: AF19AT011

    Rotating Detonation Rocket Engines (RDRE)are being developed to take advantage of the near instantaneous heat release potential of detonation waves versus conventional deflagration-based chemical reactions in combustion applications. However, the detonation product environment is extreme and current instrumentation to measure wall / surface conditions within the detonation chamber are lacking. The ...

    STTR Phase I 2019 Department of DefenseAir Force
  3. Diagnostics for Performance Quantification and Combustion Characterization in Rotational Detonation Rocket Engine (RDRE)

    SBC: INNOVATIVE SCIENTIFIC SOLUTIONS INC            Topic: AF19AT011

    In Phase I, ISSI will design and demonstrate a laser absorption-based sensor for time-resolved measurements of combustion fuel/product concentrations (H2O, CO, CO2 and fuel) and gas temperature within the detonation channels and nozzle exit-plane of a rotating detonation rocket engine (RDRE). The goal of this STTR is to develop a single sided sensor that plugs into the outer wall of the RDRE simil ...

    STTR Phase I 2019 Department of DefenseAir Force
  4. Space-Based Computational Hyperspectral Machine Vision using Compressed Sensing Neural Networks

    SBC: Kent Optronics, Inc.            Topic: AF19AT015

    In this STTR Phase I proposal, Kent Optronics (KOI) together with its partner, Rice University, propose to develop novel deep learning algorithms to perform machine vision tasks such as target recognition and tracking utilizing the direct measurements from a compressive hyperspectral imaging system. By skipping the hypercube reconstruction, this combination of hardware and software will allow real ...

    STTR Phase I 2019 Department of DefenseAir Force
  5. Multifunctional Integrated Sensing Cargo Pocket UAS

    SBC: ENDECTRA LLC            Topic: AF19AT016

    Palm-sized unmanned aerial systems (nano UAS) weighing tens of grams have evolved to the point where they are becoming useful to the warfighter. However, their small mass, fragility, and limited batteries still necessitate the use of emerging, low mass/power technologies to meet the full range of potential missions, including new autonomous flight control and collision avoidance strategies, struct ...

    STTR Phase I 2019 Department of DefenseAir Force
  6. Tunable bioinspired spatially-varying random photonic crystals

    SBC: Electro Magnetic Applications, Inc.            Topic: AF19AT017

    Metamaterials and photonic crystals are engineered composites that exhibit novel and interesting properties not found using ordinary materials. They have been shown to allow extraordinary control over the electromagnetic field, including molding the flow of energy, amplitude profile of the field, phase of the waves, intermodal coupling, and more. To achieve such control, a set of tools and procedu ...

    STTR Phase I 2019 Department of DefenseAir Force
  7. Tunable bioinspired spatially-varying random photonic crystals

    SBC: APPLIED OPTIMIZATION, INC.            Topic: AF19AT017

    The research objective is to develop a tunable spatially-varying photonic crystal (SVPC) to achieve the optical propagation properties (reflection and transmission) of the light through the designed structure for the visible and near IR-bands. The light from this SVPC will be able to focus and bend as a function of the spatial variation of the refractive index, input angle, and state of polarizati ...

    STTR Phase I 2019 Department of DefenseAir Force
  8. ENHANCE – Enabling Hybrid Anodes with Nano-Carbon Electrodes

    SBC: CELLEC TECHNOLOGIES, INC            Topic: AF19AT014

    The objective of this research program is to develop an ultra-lightweight carbon nanotube-lithium metal (CNT-Li) hybrid anode to enable high energy density lithium ion cells. These CNT-Li anodes will be paired with carbon nanotube enhanced high areal loading (mAh/cm2) cathodes to achieve cell-level energy densities that exceed 400 Wh/kg at the cell-level and have the potential to exceed 500 Wh/kg. ...

    STTR Phase I 2019 Department of DefenseAir Force
  9. Process to Mitigate Catastrophic Optical Damage to Quantum Cascade Lasers

    SBC: IRGLARE LLC            Topic: N19AT004

    The development of a catastrophic optical damage model for quantum cascade lasers describing instantaneous laser damage at high optical power levels is proposed. The model will be validated by comparison to experimental data. Based on obtained results, changes to laser design and laser fabrication resulting in an increased damage threshold will be implemented. The work will ultimately result into ...

    STTR Phase I 2019 Department of DefenseNavy
  10. Processes for Fabrication of Atomically Precise Strongly Correlated Materials

    SBC: XALLENT INC.            Topic: ST17C002

    Developing knowledge-driven nanoelectronics for military applications requires understanding the fundamental physics that governs the behavior of the underlying material. Strongly correlated materials have very desirable properties such as interfacial superconductivity, ferroelectricity, ferromagnetism, and huge magnetoresistance, which make them an ideal set of candidates to integrate with semico ...

    STTR Phase II 2019 Department of DefenseDefense Advanced Research Projects Agency
US Flag An Official Website of the United States Government