You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Novel Nanocoating technology for Functional Textile

    SBC: Claros Technologies Inc.            Topic: A18BT024

    Nanoparticles represent an attractive alternative in coating processes due to their functional versatility, including surface, optical, conductive and catalytic properties. However, current processes of coating textile products with nanoparticles results in rapid loss of the nanoparticles during laundering or use, leading to a significant decrease in product durability and functionality and increa ...

    STTR Phase I 2019 Department of DefenseArmy
  2. CIM-MIAS (Cyber Information Management and Mission Impact Analysis System)

    SBC: MODUS OPERANDI INC            Topic: AF18CT002

    The DoD lacks an multi-level security (MLS) cyber information management (CIM) system capable of collecting, sharing and disseminating cyber information containing threats, system vulnerabilities and mission impacts and risks for systems operating at multiple security levels. A system that can securely collect and persist this information from various systems operating at various security levels i ...

    STTR Phase I 2019 Department of DefenseAir Force
  3. Quench Monitoring and Control System for High-Temperature Superconducting Coils

    SBC: ADVANCED CONDUCTOR TECHNOLOGIES LLC            Topic: N19AT016

    The Navy has been developing superconducting systems, based on high-temperature superconductors (HTS), for future use on Navy ships. One of the challenges associated with superconducting magnets is the possibility of a quench, which is an event where a local hot spot develops within the superconductor that quickly spreads throughout the device, driving it into its normal and dissipative state. Sen ...

    STTR Phase I 2019 Department of DefenseNavy
  4. Novel Development of an Intelligent Quench Detection (QD) Method for HTS Coils

    SBC: TAI-YANG RESEARCH CO            Topic: N19AT016

    Energy to Power Solutions (e2P) has teamed with quench detection (QD) expert Dr. Yuri Lvovsky (retired GE), Dr. Sastry Pamidi of the Center for Advanced Power Systems (FSU-CAPS), and American Superconductor Corporation (AMSC) to design, fabricate, and test a robust, reliable, and low cost QD system. e2P’s proposed system is a vastly different quench avoidance system that will provide multiple le ...

    STTR Phase I 2019 Department of DefenseNavy
  5. Homopolar AC Electric Machines for Naval Applications

    SBC: McCoy Consulting, LLC            Topic: N19AT007

    The objective of this proposed effort is to increase the power and torque density of rotating electric machinery for Naval applications by up to 50%. This aggressive goal will be achieved by developing the novel homopolar AC machine (HAM) topology. This relatively un-studied topology relies on solenoidal field and armature coils, making manufacturing simpler than traditional machines. The HAM elim ...

    STTR Phase I 2019 Department of DefenseNavy
  6. Power-Dense Electrostatic Rotating Machines

    SBC: C MOTIVE TECHNOLOGIES INC            Topic: N19AT007

    Next-generation naval ships will require electric machinery with at least 50% greater power density than is available today. Such machines must deliver up to 10’s of MW at 100-200 rpm with very high energy efficiency, extremely low noise signature, and reasonable cost. Electrostatic machine technology is often overlooked but is perfectly suited to achieving these goals. C-Motive Technologies pro ...

    STTR Phase I 2019 Department of DefenseNavy
  7. Power-Dense Electrical Rotating Machines for Propulsion and Power Generation

    SBC: CONTINUOUS SOLUTIONS Inc            Topic: N19AT007

    The primary objective is to develop electric machine/drive topologies and power architectures that achieve the power densities required for 50% more power without the increase in weight or space requirements. In addition to PMSM-based designs, two new machine topologies will be considered. The first is a trapped flux coreless (TFC) machine that utilizes superconducting pucks made of YBCO to produc ...

    STTR Phase I 2019 Department of DefenseNavy
  8. Atomic Triaxial Magnetometer

    SBC: VESCENT PHOTONICS LLC            Topic: N19AT006

    Vescent Photonics and MIT Lincoln Labs (MIT-LL) propose to develop a quantum-based vector magnetometer with low size, weight, power, and cost (SWaP+C) for Navy applications. The proposed system will rely on probing magnetically-sensitive, atomic-like transitions of nitrogen-vacancy (NV) centers in diamond to provide stable, high-bandwidth readout of the vector magnetic field with sub-picotesla sen ...

    STTR Phase I 2019 Department of DefenseNavy
  9. Remote Sensing System for Monitoring Cardiopulmonary Signals

    SBC: VIRTUAL EM INC.            Topic: AF19AT003

    Virtual EM and Case Western Reserve University are teaming to propose a standoff cardiopulmonary sensing technology to aid remote monitoring of airman and others ' physiological state of health both in the field and in the office environments. While the pulmonary sensing unit could be operated meters away, the cardio signals are picked up in closer proximity to the body.

    STTR Phase I 2019 Department of DefenseAir Force
  10. Open Call for Science and Technology Created by Early-Stage (e.g. University) Teams

    SBC: FLIGHTPROFILER, LLC            Topic: AF19BT001

    RADAR (and similar direct or observational meteorological measuring equipment) has limitations (inability to measure low vis conditions, line-of-site, limited vertical (z-axis), expensive/heavy equipment is required, etc.). To solve these limitations, a Purdue University team (launched via a SBC called FlightProfiler) has developed a technology that delivers a computer generated X-Y-Z environmenta ...

    STTR Phase I 2019 Department of DefenseAir Force
US Flag An Official Website of the United States Government